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Abstract: In this paper, we propose a system that allows the user of a real-time
speech synthesizer to directly manipulate the F0 contour of an utterance on-line
and in real-time. The intonation is generated by the Fujisaki Model, which creates
the F0 contour based on accent and phrase commands that the user needs to trigger.
These input commands to the model can be generated by the user with the but-
tons of a wireless Mycestro 3D mouse. To evaluate the usability, a study with 16
subjects was conducted and 10 monotone sentences were manipulated in real-time
using the proposed system. The results show that the majority of users were able
to produce a natural sounding intonation.

1 Introduction

In human speech, numerous prosodic features encode diverse information ranging from the
speaker’s intention (e.g., [1, 2]) to their emotional state (e.g., [3, 4]). The absence of prosody in
a synthesized utterance therefore immediately degrades the perceived naturalness and thus the
quality of the synthesis. One major prosodic feature is the change of the fundamental frequency
F0 over time. Current text-to-speech systems (e.g., MARY TTS [5]) derive the intonation from
a combination of prosody rules based on parts-of-speech tagging and punctuation information.
While this technique yields satisfying results, it requires the use of a labeling system (e.g., the
German Tones and Break Indices (GToBi) [6]) to mark up the text or phonetic representation
of the desired utterance. However, in systems where the synthesis is directly driven by acoustic
or articulatory features, this information is not available unless explicitly passed as an addi-
tional feature. In the ongoing research efforts at our lab to develop a closed-loop articulatory
synthesizer driven by articulatory measurement data from the anterior mouth cavity that can
serve as a voice prosthesis, no laryngeal information and, by extension, no F0 data is available.
Because our system does not use any text or linguistic representation of the articulated speech,
rule-based or parts-of-speech approaches are immediately disqualified. Instead, the user of the
system has to provide the time-varying F0 contour manually, on-line and in real-time. The
direct approach to obtain the contour from the user would be to let them “direct” the speech
like a director would lead a choir or orchestra, using finger and hand gestures corresponding
to pitch accents or tone height. In fact, systems based on this approach exist in the context of
the so-called “performative voice synthesis” (e.g., [7]). As the name of these systems suggest,
they are however exclusively used in artistic performances and for educational or edutainment
purposes. Because of the constant cognitive load of directly controlling the F0 contour, we in-
stead propose to employ a generative intonation model that only requires the user’s attention at
critical moments during an utterance or phrase.
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2 F0 models for intonation control

Numerous F0 models exist and among the most commonly used in speech synthesis are the Tilt
Model by Taylor [8], the Target Approximation Model (TAM) by Xu [9, 10], and the Fujisaki
Model [11]. The Tilt Model is purely mathematical, in the sense that there are no underlying
motivations from physiological processes during speech production. It is essentially a concate-
nation of parameterized curve segments to obtain any desired intonation trajectory. The user
sets the duration, amplitude and tilt of each segment sequentially. While this allows total free-
dom in the creation of the intonation, there is also no way to limit this technique to guarantee
realistic or at least physiologically possible trajectories. In contrast, the TAM is physiologically
motivated. In [9], the authors describe their model as the simulation of “the effects of the aggre-
gated force of the laryngeal controls”. It uses syllable-based pitch targets, set by the user, that
can either be constant (a static F0 level) or dynamic (a linearly rising or falling target F0). The
pitch targets of an utterance are concatenated and then passed to the model, which generates the
intonation curve by asymptotically approximating the target using an exponential function. By
imposing reasonable limitations onto the parameters, the model will therefore always generate
realistic intonation curves and artifacts can mostly be avoided. However, both the Tilt and the
Target Approximation Model are based on sequentially concatenating segments (of the F0 curve
directly or of the F0 targets, respectively). In a real-time system, this demands a lot of planning
and precise control by the user, since they have limited possibilities to correct themselves once
the segment has been parameterized.

The Fujisaki model, on the other hand, is superpositional in nature. The motivation for this
parallel approach, according to Fujisaki [12], is that the variation of the F0 in speech is caused
by the cricothyroid muscle moving the thyroid cartilage, which in turn changes the tension of
the vocal folds that are attached to it and, consequently, the F0. This movement has two degrees
of freedom (translation and rotation) and thus can be described by two components that are
independent of one another: a phrase component and an accent component. These components
are the responses of critically-damped second-order lowpass filters to an impulse (the phrase
command) as given by

Gp(t) =

{

α2te−αt t ≥ 0

0 t < 0,
(1)

where α is the time constant of the phrase component, or to a stepwise function (the accent
command) as given by

Ga(t) =

{

min(1− (1+β t)e−β t ,γ) t ≥ 0

0 t < 0,
(2)

where β is the time constant and γ is the ceiling level of the accent component. The generated
components are summed up and then added to a logarithmic base frequency to calculate the
final, logarithmic F0. As the example in Figure 1 shows, even complex F0 contours can be
generated with just a few commands.

Table 1 summarizes the properties of the three models introduced above. Even for a simple
contour, the curve segments in the Tilt Model are too complicated and unintuitive for the user
to parameterize in real-time and the model’s non-physiological background may lead to very
unnatural sounding contours, when non-optimal parameters are chosen. The Target Approxi-
mation Model should generally produce natural sounding contours and may be a good choice
for simple contours (e.g., a continuously declining F0), but becomes much more difficult to
handle in real-time if used to generate more complex contours involving accents. The Fujisaki
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Figure 1 – The Fujisaki intonation model (figure recreated from [12]): The final F0 contour is a su-
perposition of a phrase component and an accent component. The phrase component is generated as
the response of a critically-damped second-order lowpass filter to sequence of (weighted) impulses (the
phrase commands Ap) and the accent component is the response of another critically-damped second-
order lowpass to a stepwise function of varying height and width (the accent commands Ap). The
components are summed up and added to a base frequency Fb in the logarithmic domain to obtain the
final contour.

model, however, only needs a single parameter for a basic, declining contour and only two more
for each accent. More detailed contours can easily be generated by superimposing simple con-
tours. Therefore, it is the most suitable for the purpose of a real-time intonation generator with
minimal cognitive overhead for the user.

Tilt Model Target Approximation Model Fujisaki Model

Motivation purely mathematical physiological physiological

Elements pitch events syllables phrases and accents

Contour generation sequential sequential superpositional

Parameters 3 (per element) 3 (per element) 2 per phrase, 3 per accent

Table 1 – Comparison of three intonation models commonly used in speech synthesis.

3 The Wearable Intonation Generator

To evaluate the feasibility of manipulating the intonation of an utterance in real-time, we devel-
oped a software called “Wearable Intonation Generator” (WIG) using the C++ library wxWid-
gets (version 2.8.12, www.wxwidgets.org). The software consists of a graphical user interface
(see Figure 2) that allows the user to load a wave file into the program buffer. After pressing the
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“Play Sound” button, the file is played back and the user can manipulate the intonation contour
using the Fujisaki model, which is then impressed on the played back utterance in real-time
using a Time Domain Pitch-Synchronous Overlap and Add (TD-PSOLA) algorithm. The con-
trol of the Fujisaki model is further simplified by setting the parameters α , β and γ and the
phrase and accent command magnitudes for the entire utterance using the settings tab. Because
the Fujisaki model is superpositional, the user can reclaim some of the freedom that is lost due
to the static parameters by “stacking” several commands, which is not possible with the other
models. While this restricts the shape of the components that can be generated, it reduces the
entire control of the intonation generation to setting the timing of the commands using only two
buttons: one to trigger a phrase command (an impulse) and one to trigger an accent command
(push to step up, hold, release to step down). The software supports two input modalities to
use as these controls: the keyboard ( Spacebar for phrase, Ctrl for accent commands) or the
mouse (left button for phrase, right button for accent commands). Since the system is intended
to be used as a component in a wearable speech synthesis system, WIG also supports the use of
the wireless Mycestro 3D mouse (www.mycestro.com), which is a small device that is strapped
to one of the user’s index fingers and communicates with the PC via Bluetooth. The Mycestro
mouse supports three buttons and a scroll wheel, of which only two buttons (left and right) are
needed to control the WIG.

Figure 2 – Graphical user interface of the Wearable Intonation Generator. The settings tab hides the
parameter settings for the Fujisaki model. During playback of the wave file, the user can generate phrase
and accent components by setting the timing of the corresponding commands using the keyboard or a
wearable 3D mouse. The F0 of the wave file is manipulated on-line using a TD-PSOLA algorithm.

4 Usability study design

Even though only two buttons are needed to create even complex F0 contours, the task to give
the commands on-line and in real time is unusual for the user and requires a usability test. We
therefore designed a study with 16 subjects (native-level German speakers, age 21-30) who were
asked to manipulate the F0 contours of 10 German sentences (based on the Wenker sentences
used in [13], see Table 2). The sentences were recorded with a professional male speaker and
their intonation flattened to a static F0 of 100 Hz using the software Praat [14]. This approach
was chosen over a (unit selection or articulatory) synthesis of the sentences with a constant F0
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because the introduction of additional unnaturalness due to synthesis artifacts was to be avoided.
It also provided a truly natural sample for reference during the rating part.

German English translation

1. Das Feuer war zu heiß, die Kuchen sind ja unten ganz schwarz. The fire was too hot, the cakes are all black on the bottom.

2. Wem hat er denn die neue Geschichte erzählt? Whom did he tell the new story?

3. Ihr dürft nicht solche Kindereien treiben! You should not horse around!

4. Das war recht von Ihnen! You did good!

5. Ich bin mit den Leuten da hinten über die Wiese ins Korn gefahren. I drove with the people over there across the meadow into the field.

6. Wir sind müde und haben Durst. We are tired and thirsty.

7. Es hört gleich auf zu schneien, dann wird das Wetter wieder besser It is going to stop snowing soon, then the weather will improve again.

8. Wie viel Pfund Wurst und wie viel Brot wollt ihr haben? How many pounds of sausage and how much bread do you want?

9. Ich verstehe euch nicht, ihr müsst ein bisschen lauter sprechen. I don’t understand you, you have to speak a little louder.

10. Er ist vor vier oder sechs Wochen gestorben. He died four or six weeks ago.

Table 2 – List of German test sentences used in the usability study and their English translation for
reference.

In preparation of the experiment, each subject was asked to familiarize themselves with
the controls of the software using it with a standard desktop mouse on their own computer
and by manipulating a continuous 100 Hz sine tone. During the experiment, each subject used
the lab computer and the Mycestro 3D mouse. In order to avoid mistakes due to the use of
this unusual input device, each subject did a little exercise where they had to repeatedly click
with the 3D mouse into a specific cell of a spreadsheet. Once they were comfortable with the
handling of the device, each subject was presented with one of the 10 monotone sentences and
was asked to manipulate the intonation in real-time during playback to make it sound more
natural. If they were not satisfied with the result of a manipulation, they were allowed to try
again with the same sentence. Once the subject was content with the result or after a maximum
allowed manipulation time of three minutes, the last generated contour and the corresponding
manipulated audio file were saved and the experiment continued with the next sentence. The
order in which the sentences were presented was randomized for each subject. After all 160
manipulations (16 subjects times 10 sentences) had been made, the entire set of 160 manipulated
audio files plus the 10 original recordings (with a natural intonation) and the 10 recordings with
a flattened intonation was rated by each subject on a naturalness scale from 1 (totally unnatural)
to 5 (totally natural).

5 Results

For each subject, 10 manipulations were rated. Calculating the global mean across all 10 ma-
nipulations would potentially yield large standard deviations (SD), since some of the sentences
may have been easier to manipulate than others. So instead of the global mean and SD, the
mean and SD of the ratings of each manipulation was calculated. Since every manipulation
produced by a subject is a manifestation of that subject’s ability to use the system efficiently,
we regard this proficiency as a process and the manipulation as a realization from that process.
To characterize each subject’s ability to produce natural sounding contours we then calculated
the naturalness score ν by combining the means and standard deviations across the manipulated
samples from each subject by iteratively multiplying the corresponding (assumingly) Gaussian
density functions. The result of each multiplication of a distribution with a mean µi and a SD σi

and a distribution with a mean µ j and a SD σ j is again a Gaussian density function with mean
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µi j and SD σi j according to:

µi j =
µiσ
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√

σ2
i σ2

j

σ2
i +σ2

j

(3)

The results of the study are summarized in Figure 3. Compared to the sample with a flat
intonation, only subject 14 was generally not able to improve the naturalness of the intonation
with our system. While a distinct gap remains in the perceived naturalness between the original
recording and even the manipulations made by the best subject, the majority of the subjects
(10 out of 16) achieved a naturalness score of more than three, which is considered natural.
As illustrated by Table 3, there is only a very weak positive correlation between the average
time to settle on a contour and its naturalness, and a somewhat stronger, but still weak, negative
correlation between the average number of attempts and the naturalness.
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Figure 3 – Mean (dots) and variance (whiskers) of the perceived naturalness ν (rated by all subjects) of
the 10 samples generated by the respective subject i. The original sample was a natural recording, the
flat sample was the same recording manipulated to a flat 100 Hz intonation.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mean manipulation time [min:s] n/a n/a 1:14 1:28 0:39 1:06 1:28 0:47 1:00 1:00 1:11 1:19 0:55 1:16 1:11 0:57

Mean number of attempts n/a n/a 11 9.1 5.1 9.8 12.4 7.7 10.7 10.7 16.2 19.9 13.9 21.6 17.3 5.8

Naturalness score 3.03 3.59 3 3.34 3.6 3.2 3.6 2.7 3.5 2.5 3.1 3.75 3.14 1.56 2.6 3.1

Table 3 – Average amount of time and mean number of attempts each subject needed to settle on a
contour. The time and number of attempts was not tracked for the first two subjects. The correla-
tion coefficient between the average manipulation time and the naturalness score is ρt = 0.012 and the
correlation coefficient between the number of attempts and the naturalness score is ρn =−0.38.

6 Summary and conclusion

We introduced a system consisting of a wearable input device (Mycestro 3D mouse) and a
PC software that allows the real-time on-line manipulation of the intonation of pre-recorded
sentences with flat intonation. The system’s usability was evaluated with a small-scale user
study and the results show that the majority of the users were generally able to produce natural
sounding F0 contours. However, the users were given an indefinite number of retries and a rather
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long time period to manipulate the short sentences. Future studies should therefore examine,
how the naturalness is affected by stricter limitations, since the final application is supposed
to be in a wearable speech synthesis system, where usually only a single attempt for each
sentences is possible. Another future study should also examine, how subjects improve over
time as they train on one set of sentences with an indefinite number of attempts and are then
tested on a different second set with only one attempt per sentence. It is also of interest to see if
the users’ proficiency can be improved by teaching them the theory behind the Fujisaki model.
In the presented study, the users were not told anything about the underlying concept of distinct
phrase and accent components to allow them more freedom in how they use the system. As
shown by Figure 4, a basic understanding of this concept may lead to better results.
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Figure 4 – Example F0 contours generated by the highest-scoring subject (above) versus the lowest-
scoring subject (below). Apparently, both subjects had a similar target contour in mind (one phrase with
two accents) but subject 14 seemingly had trouble with both timing and choice of the commands. Future
work should investigate if these problems can be mitigated by further and supervised training.

Another possible improvement could be to use a declining base F0 or even a phrase com-
ponent as a base. This would further reduce the user’s workload to triggering the accents only,
which may be easier to accomplish because of the more immediate response to a command
(as opposed to the comparatively slowly rising response to a phrase command). This is es-
pecially advantageous for the target audience of a speech prosthesis, among which cognitive
impairments are likely to occur. Lastly, because the present study did only consider the gen-
eral naturalness (a fairly abstract measure), another experiment should examine to what extent
the subjects are able to intentionally convey information using the artificial intonation (e.g.,
stressing specific words or syllables to resolve ambiguities).
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