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Abstract: Slot filling, as a subtask of spoken language understanding, is designed
to extract key query terms from text after it has been recognized from speech. Most
state-of-the-art models do not, however, take recognition error into account and
show a substantial drop in performance when applied to recognized text. One
source of information that marks important parts of utterances and is available
from speech data is prosody. Since pitch accents have been shown to correlate
with semantic slots in the ATIS benchmark corpus, we combine these as features
with word embeddings for slot filling on ATIS and compare their impact on the
performance of two state-of-the-art models when applied to recognized text. Our
experimental results and analysis show that extending word embeddings with pitch
accent features slightly improves slot filling systems on recognized text.

1 Introduction

Slot filling is a subtask of spoken language understanding (SLU) that aims at assigning a se-
mantic label to words in a sentence that “fill” a semantic frame, or slot, such as locations or
time periods. State-of-the-art methods are evaluated on the benchmark dataset from the Air-
line Travel Information Systems (ATIS) corpus [1] and yield around 95% F1-score using deep
neural network (DNN) architectures [2, 3, 4, 5, 6, 7]. The features used in these models are
typically lexico-semantic representations in the form of word embeddings [8]. As slot filling
operates on text only, typical experiments use the text data provided in the benchmark dataset
along with the slot annotations. Since SLU is designed to extract information from speech and
thus involves the use of automatic speech recognition (ASR), the more realistic setting would
be to apply and optimize these tasks on actual ASR output. Mesnil et al. [5] report that the per-
formance of their RNN-based slot filling model drops to around 85% F1-score on recognized
text while that on the reference dataset is around 95%. He and Young [9] compare different
SLU tasks on recognized and reference text and found that slot filling (referred to as semantic
parsing) performance using a vector state model drops from around 90% to 89% F1-score.

For this reason, it may be helpful to include additional features that can be extracted from
speech, such as prosodic information. Previous research has provided evidence that pitch ac-
cents are useful for various natural language processing tasks: Katerenchuck and Rosenberg
[10] use prosodic labels in the form of ToBI types [11] and clusters of acoustic features to im-
prove named entity recognition of recognized speech. Rösiger and Riester [12] found that know-
ing about the presence or absence of a pitch accent improves automatic coreference resolution,
since coreferent items are given information in the discourse and hence typically deaccented.
Several studies focused on the use of prosodic information for spoken language understanding,
such as early experiments by Veilleux and Ostendorf [13] on the ATIS corpus and Shriberg and
Stolcke [14] that used prosodic modelling to improve ASR and other SLU subtasks.
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Figure 1 – Bidirectional recurrent neural network for the slot filling task

The intuition behind the use of prosodic information in this work can be explained as fol-
lows: During human-to-human discourse, there can be recognition errors due to, for example,
environmental noise. A human listener may be able to fill a semantic slot not only by using the
correctly understood context information, but also by prosodic cues. In this work we focus on
pitch accents. Pitch accents are used to give words more salience during discourse to highlight
certain information, such as focus, contrast or information status. For example, content words,
especially with new information status, typically carry pitch accents [15]. An utterance in the
ATIS dataset like List flights from Dallas to Houston is expected to have pitch accents on Dallas

and Houston, since these will constitute new as well as key information in this setting. In a pre-
vious study [16] it was shown that words bearing automatically predicted pitch accents account
for around 90% of the slots in a subset of the ATIS dataset. This observation holds when applied
to ASR output, which means that such information can be extracted in an automated setting.

In this paper, we present a first simple, efficient step to extend two state-of-the-art DNN
models for slot filling by adding prosodic information extracted automatically from speech data.
This information is included as binary pitch accent features alongside the traditionally used
lexico-semantic word embeddings. In this work we refer to these vectors as having pitch ac-

cent extensions. Previous research has shown that convolutional neural network (CNN) models
based on high-dimensional word embeddings can benefit from even a few linguistically in-
formed features [17]. We compare the effect this extension has on a bidirectional recurrent
neural network (RNN) [6] and a bidirectional sequential CNN [7] applied to recognized text.

2 Pitch Accents in Neural Slot Filling Models

2.1 Neural Slot Filling Models

In order to build the baseline systems, we use the recurrent neural network (RNN) proposed by
Vu et al. [6] and the convolutional neural network (CNN) proposed by Vu [7]. These two mod-
els utilize word embedding information in different ways. We examine the effect that adding
pitch accent extensions to the word embeddings have on these models. The first model [6] is an
elman-type bidirectional RNN (see Figure 1) that yields an F1-score of 95.56% on the bench-
mark ATIS dataset. The features in this model are 100-dimensional word embeddings that are
randomly initizalized and jointly trained along with the RNN. The bidirectionality of this model
refers to the combination of a forward and backward hidden layer using an addition operator in
order to take past and future contexts (trigrams) into account.

The second model (see Figure 2) involves a bidirectional sequential CNN [7]. It outper-
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Figure 2 – Bidirectional sequential convolutional neural network for the slot filling task

forms the first model on slot filling task with a 95.61% F1-score on the ATIS dataset. This
method combines two CNNs that model the future and past contexts respectively as well as an
additional extended surrounding context to give the current word more weight. The presentation
of the past and future contexts are concatenated to form the final automatically learnt features.
The context windows for both the forward-moving and backward-moving CNNs comprise 9
words. The surrounding context hyperparameter is 3 words. The features are 50-dimensional
word embeddings.

Objective Function Following Vu et al. [6] and Vu [7], we use the ranking loss function pro-
posed by Santos et al. [18]. Instead of using the softmax activation function, we train a matrix
W class whose columns contain vector representations of the different classes. Therefore, the
score for each class c can be computed by using the product

sθ (wt)c = hT
wt
[W class]c (1)

The ranking loss function [18] maximizes the distance between the true label y+ and the best
competitive label c− given a data point x. The objective function is

L = log(1+ exp(γ(m+
− sθ (wt)y+)))+ log(1+ exp(γ(m−+ sθ (wt)c−))) (2)

with sθ (wt)y+ and sθ (wt)c− as the scores for the classes y+ and c− respectively. The parameter γ

controls the penalization of the prediction errors and m+ and m− are margins for the correct and
incorrect classes. γ , m+ and m− are hyperparameters which can be tuned on the development
set. For the empty class O (no slot), only the second summand of Equation 2 is calculated
during training, i.e. the model does not learn a pattern for class O but nevertheless increases
its difference to the best competitive label. Furthermore, it implicitly solves the problem of
unbalanced data since the number of class O data points is much larger than other classes.
During testing, the model will predict class O if the scores for all other classes are < 0.

2.2 Extending the Word Embeddings with Pitch Accents

A word vector with a pitch accent extension for a word w consists of the word embedding of w

as well as a binary flag ∈ (0,1) indicating the absence or presence of a pitch accent on w:

embs(w) = [lexical_embs(w), pitch_accent_ f lag(w)] (3)
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“1” refers to pitch-accented words and “0” to non-pitch-accented words. To extract this flag, we
first run an ASR system on the audio signal to obtain the word, syllable, and phone alignments.
Afterwards, a pitch accent detector (described in the next section) is applied to determine the
binary label for each of the recognized words. The lexical word embeddings are randomly
initialized and concatenated with the binary pitch accent flag to form the new vectors. Hence,
words in different contexts might have different embeddings depending on whether they are
pitch accented or rather not. This procedure constitutes a simple and efficient way to enhance
word embeddings with pitch accent information for NLP tasks.

3 Pitch Accent Detection

The pitch accent detection model used in this work is trained on part of the Boston Radio News
Corpus [19] that is labelled with prosodic events (ToBI accent and boundary types). This subset
encompasses 220 speech files by 5 speakers, 3 female and 2 male, and consists of in total around
1 hour and 20 minutes of speech. We consider the binary case (pitch accent or none) and group
all pitch accent types together as one class. The method, adopted from Schweitzer [20], requires
time-aligned data in order to extract acoustic features for single syllables that are derived mostly
from PaIntE parameters [21]. A further description of this pitch accent detection procedure is
given in [16]. The cited work also shows that the accuracy of this model, when applied to the
ATIS corpus, is roughly 70% when measured against a human labeller. This is only slightly
lower than the accuracy measured using leave-one-speaker-out cross-validation on the Boston
dataset, which is 74.4% on average.

4 Data

4.1 The ATIS Corpus

The ATIS corpus contains utterances of speakers requesting information on airline travel. Key
query terms are assigned slot labels referring to semantic roles such as departure date, departure

time, airline name while the rest are marked as empty, e.g. I - O WANT - O TO - O FLY - O

FROM - O DENVER - B-fromloc.city_name TO - O HOUSTON - B-toloc.city_name.
The standard split used in He and Young [9] and subsequent related work consists of 4,978

utterances from the Class A training data of the ATIS-2 and ATIS-3 corpora. 893 utterances
from ATIS-3 are used as test data. We use 4,924 utterances and corresponding .WAV files
from the training dataset and use the 893 test utterances in this work. The reason for our
smaller training set is the fact that the utterance IDs for the benchmark training dataset were not
available to us and some sentences did not have a matching equivalent in the original corpus.
This is necesssary, however, to create pairs of audio files and the respective transcriptions for
our experiments.

4.2 Slot Labels for ASR Output

We recognized the ATIS test set using a triphone model from the Kaldi toolkit 1 trained on
around 4,900 utterances from the ATIS training data with 7.06% word error rate (WER). In
order to make the recognized output compatible with the slot filling system and comparable
with the original test data, the following preprocessing steps were necessary.

Having obtained recognized text, we applied a workaround solution to the problem that the
slot annotations were created for the original text, and we cannot simply transfer the annotations

1www.kaldi-asr.org
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to the ASR output for evaluation since the text will differ slightly. We time-aligned the words in
the original text to the audio files using Kaldi, which automatically provides the time intervals
for each slot. Then, using the time-alignments of the recognized text, we assign each word in
the recognized output a slot label according to the time intervals of the respective label and
the reference word itself: If the reference and recognized words are the same, we assign the
recognized word the label of the reference word if their time intervals match within a threshold
of 0.05 seconds. Slot-annotated words in the reference that do not have an exact match in the
recognized output are assigned to the recognized word within a time interval of 0.02 seconds.
Using this method, we acquire annotations for the recognized output automatically, a form of
silver standard, which we need in order to measure slot filling performance. Human-detectable
inconsistencies can occur, however, due to recognition errors and and misaligned words, even
though these remain at an acceptable level.

The slot filling training and test data from ATIS as used by Mesnil et al. [22] is provided as
a python pickle object 2 that already contains the IDs for each word for use as feature vectors.
We reused the same word-to-ID and label-to-ID indexes to create the new recognized test set.

5 Experimental Results

5.1 Pitch Accents in ATIS

In order to estimate how representative pitch accents are in the ATIS corpus, we count how often
pitch accents co-occur with slots in the test set. We analyze the recognized version in the same
manner. Table 1 shows the results of this analysis. Almost 93% of the words that are annotated
with slot labels are also pitch accented. This holds for both the original transcriptions as well as
the ASR output and provides evidence that was previously described in [16] that pitch accent
features may serve as a resource for SLU tasks such as slot filling.

original transcriptions recognized text
# files 893 893
# words 9551 9629
# slots 3663 3560
# predicted accents 5295 5169
# pred. accents on slots 3395 3308
# pred. accents on non-slots 1900 1861
slots with pred. accent 92.7% 92.9%

Table 1 – Co-occurrences of pitch accents and slots in the original and recognized transcriptions of the
ATIS test set.

5.2 Pitch Accents in Neural Models

As a preprocessing step before prosodic analysis, we time-align the full ATIS dataset at the
phone, syllable and word level. We apply the pitch accent detector as described in section
3 to obtain the time points of every predicted pitch accent in the training data, the original
transcriptions of the test data and the recognized test data. This new information is included
in the input data to the slot filling models as a binary feature vector for each word: if there is
an accent within the time interval of a word, then the feature value is 1, if not, then the value
is 0. We add this information to the baseline models as described in section 2. The model is

2http://deeplearning.net/tutorial/rnnslu.html
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trained using stochastic gradient descent with up to 100 epochs and early stopping. We begin
training with an initial learning rate of 0.025 and halve the learning rate if the performance on
the development set has not improved after 5 epochs. We compare the performance of the RNN
and CNN slotfilling models described in section 2 on both the original text and the recognized
output. The F1-scores are given in Table 2. Our results on the manual transcriptions are slightly
different compared to the results reported in Vu et al. [6] and Vu [7] due to the fact that we used
smaller training set and use 10% of the training data as a development set for early stopping.

RNN CNN
Transcriptions (lexical word embeddings) 94.97 95.25
+ pitch accent extensions 94.98 95.25

ASR output (lexical word embeddings) 89.55 89.13
+ pitch accent extensions 90.04 89.57

Table 2 – F1-scores of slot filling on original and recognized text and after adding pitch accent features.

As expected, results on the ASR output is much worse than on the manual transcriptions.
This performance drop is due to ASR errors. The pitch accent extensions do not improve the
F1-score when using manual transcriptions but do not harm the slot prediction performance
either. This indicates that context information as modelled by the sequential model is strong
enough to predict slot labels in this dataset. Adding pitch accent extensions, however, slightly
improves the F1-score when on ASR output on both models (RNN and CNN). This implies that
the added pitch accent information may help to balance out the effect of ASR errors in some
cases.

In order to illustrate in what cases the pitch accent extensions can help improve the results,
we present two example sentences in Table 3. These examples involve unknown tokens; tokens
that replace words in the benchmark dataset that occur only once. The recognized version
includes more unknown tokens in cases where the ASR system was not able to recognize a
word, or when a misrecognized word does not exist in the original dataset. The unknown token
serves as a “wildcard”, receiving its own representation via the word embeddings but can be
assigned any label. In the first sentence, the unknown token is assigned a location slot label
by the model trained with pitch accent features while the baseline model assigned the empty
slot. In the second sentence, the word Toronto has been misrecognized by the ASR system. The
baseline model has trouble classifying the resulting words while the model using pitch accents
“ignores” this part of the sentence, which would be considered correct in this case.

reference text I NEED THE FLIGHTS FROM WASHINGTON TO MONTREAL ON A SATURDAY
recognized text I NEED THE FLIGHTS FROM <UNK> TO MONTREAL ON SATURDAY
reference slots O O O O O B-fromloc.city_name O B-toloc.city_name O B-depart_date.day_name
with accents O O O O O B-fromloc.city_name O B-toloc.city_name O B-depart_date.day_name
baseline O O O O O O O B-toloc.city_name O B-depart_date.day_name

reference text WHICH AIRLINES FLY BETWEEN TORONTO AND SAN DIEGO
recognized text WHICH AIRLINES FLY BETWEEN TO ROUND <UNK> AND SAN DIEGO
reference slots O O O O O O O O B-toloc.city_name I-toloc.city_name
with accents O O O O O O O O B-toloc.city_name I-toloc.city_name
baseline O O O O B-fromloc.city_name B-round_trip I-round_trip O B-toloc.city_name I-toloc.city_name

Table 3 – Example utterances, recognized versions and their slot labels predicted by the RNN model
with and without pitch accent extensions.

We ran a brief analysis of the RNN results to gain some insight into whether the pitch accent
information helps to label slots on unkown words independent of the slot type. Specifically, we
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counted the instances where the model correctly distinguished slots from the empty class. Of
all unknown words with a reference slot, around 43% were correctly labelled in the baseline
model, whereas around 51% were correctly assigned a slot when using pitch accent extensions.
This indicates that pitch accent information was used by the model to localize a semantic slot
even though the predicted slot type was incorrect. Thus, unknown words may still originally
carry acoustic information in the signal that is beneficial to this task, and is captured by the
proposed method.

6 Conclusion

In this work, we addressed the notion of overcoming the performance drop of state-of-the-
art slot filling methods on speech recognition output. Our method involved combining pitch
accent features with word embeddings as a way of including acoustic-prosodic information
that is extracted from the speech signal but is lost during ASR. We tested this method on the
ATIS benchmark corpus using two different models. In terms of quantitative results, small but
positive effects were obtained on both models. Taking a closer look reveals some evidence that
pitch accent features may be helpful in the case of misrecognized or unknown words. While our
analysis provides a straightforward intuition of the benefits of prosodic information for this task,
it remains difficult to determine whether the proposed method or the fact that the ATIS dataset
is rather limited is the reason why the performance increase is only slight. Further research is
necessary to fully investigate the potential of prosodic information in slot filling.
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