
A DEVOPS MANIFESTO FOR SPEECH CORPUS MANAGEMENT

Ingmar Steiner

Saarland University & DFKI GmbH

steiner@coli.uni-saarland.de

Abstract: In this paper, we introduce certain concepts from the DevOps philoso-

phy, and more generally from the software development lifecycle. We argue that

the separation between source code and how it is built and released for distribution

can be applied to speech corpora as well. We draw a distinction between the de-

velopers and maintainers of a speech corpus on one hand, and the researchers who

use it on the other. We propose conventions to efficiently manage corpus metadata

like source code, and speech data like static assets that can be retrieved automat-

ically. Finally, we mention several use cases which illustrate the merits of these

conventions.

1 Introduction

DevOps (from “development and operations”) comes from the field of software development,

and means different things to different people. Jabbari et al. [1] conducted an empirical study

across the scientific literature and found a recurring set of concepts, principles, and philoso-

phies which form the common ground of what DevOps actually is. Unfortunately, the term

has also become a buzzword of sorts in the software industry, and as such has been distorted

and hyped, but nevertheless, its core principles include, (a) an emphasis on communication and

collaboration; (b) efficiency and quality through automated testing and continuous delivery;

and (c) integration of tools and infrastructure into workflows. Some of the principles and ideas

in DevOps are also associated with other movements in software development, but DevOps is

permissive and practical, rather than dogmatic, and so we are free to borrow and adapt its ideas.

How is this relevant for us? Unlike enterprise programmers, we researchers tend to work

in small groups or alone, on several projects at a time, but nevertheless, many of us already

use one or more of the tools and ideas that DevOps promotes. Those of us who use source

code management (SCM) tools (e.g., Subversion1 or Git2) to track the development of software

or experiment recipes might use automatic testing to validate results and guard against bugs;

we might also use SCM to manage the LATEX sources of papers we write together with our

colleagues.

But how can a DevOps culture contribute to speech corpus management? A conventional

speech corpus tends to come in the form of one or more compressed archives (e.g., zip files),

downloaded or copied by hand from some webpage or network share. The archives typically

contain hundreds or thousands of individual audio files, as well as equally many metadata files

(phonetic annotations, etc.), and perhaps other data as well. The structure of these packages is

often arbitrary, the annotations are in one or several ad-hoc formats, and in order to start using

such a corpus for experiments or other research, it can take hours or even days of converting data

from one format to another, rearranging directories, and – perhaps – writing scripts to automate

some or all of these processes. Needless to say, these can be tedious activities, and more often

1https://subversion.apache.org/
2https://git-scm.com/

160



than not, mistakes are made that can lead to serious problems later, when the corpus data is

finally put to use.

Incidentally, the corpus itself might not be error-free. Annotations could contain typos

or misalignments, or the recordings themselves might have problems. Those in the research

community who have worked with a given corpus are bound to have uncovered such mistakes

or idiosyncrasies, but there is rarely a public platform to discuss them and share solutions or

patches. Often enough, the creators of a given corpus have long moved on to different institu-

tions, and there is no central entity to maintain it, fix mistakes, and publish updated versions.

There is a growing awareness of these issues in the speech community; Rosenberg [2] highlights

some of them, and argues for SCM for metadata as a solution.

This paper goes several steps further. We distinguish between the raw data (analogous

to the “source” of the corpus) which can be collaboratively maintained using SCM, and the

corpus release, automatically packaged for distribution in a “ready-to-use” form, so that the

latest version is always available. Ideally, a ready-to-use speech corpus should be,

portable using standard container formats supported by open software programs on any

operating system;

efficient compressed to save space, using a free, lossless codec for audio data, and dis-

tributed in a small number of files which support streaming and seeking;

self-documenting including all relevant metadata, synchronized with the data stream(s),

and metadata structured in a format that is both human-readable and easy to process

automatically.

A corpus in such a form can be used efficiently as a dependency of a given project or

experiment. By leveraging DevOps concepts and tools designed for efficient resolution and

retrieval of dependencies from software repositories, we can obtain, cache, and process speech

corpora automatically. Moreover, generic software libraries and scripts can be applied and used

without having to reinvent the wheel – these themselves should also be portable and openly

developed.

As a case study, we will take the MOCHA-TIMIT corpus [3], which has been used by hun-

dreds of researchers in the past 15 years, all of whom have had to familiarize themselves with its

custom data format and structure. We demonstrate how to build and publish a distribution of the

corpus, and present a portable sample project that uses this distribution for a simple articulatory

analysis experiment.

2 Software analogy

In order to reflect on the lifecycle of speech corpus management, an analogy to software devel-

opment can provide useful insight.

A software library or application can be created and maintained by one or more developers,

who may well use SCM to track changes in the source code and collaborate; for open-source

software (OSS), the source code and peripheral services (such as an issue tracker or project

website) may be provided online by code hosting websites such as GitHub3 or SourceForge4.

The development process consists of adding new features, fixing problems, and so forth,

and every so often, the developers will consider the current state of their software “stable”

enough to warrant an explicit publication. This is commonly referred to as a release package,

3https://github.com/
4https://sourceforge.net/

161



and is associated with a version number. The purpose of the version number is to allow ref-

erence to a known, well-defined state of the software, and to indicate an explicit order in the

version history. It is then possible to make statements such as, “this application depends on

version 1.1 of that library”, “that feature was introduced in version 1.2” or “the problem inad-

vertently introduced in version 0.8 was fixed in 0.8.1”, with the understanding that the feature in

question cannot be used in a version older than v1.2, or that people using v0.8 who are affected

by the problem should use v0.8.1 (or newer) instead. Version numbers are incremental, and

conventions such as semantic versioning place additional significance on the fields of a version

number.5

It is considered standard practice for the developers to write “release notes” or to maintain a

“change log”, published with each release package, making it straightforward to understand the

impact of the new release, and how it differs from, and improves over, the previous versions.6

Developers of the software may make use of various techniques to facilitate their work, in-

cluding continuous integration testing, or automatically publishing “snapshot”, developer ver-

sions, sometimes on a daily (or “nightly”) basis; this allows consumers of their software to try

out the latest development changes long before a new stable version is released (and conceivably

provide feedback, which will help make the software more stable ahead of the release).

2.1 Developers vs. users

A crucial distinction is that between the developers one one hand, who are expected to have

experience with software engineering and understand not just the source code they work on, but

also the lifecycle from one release to the next, and the users on the other. Users are the con-

sumers of the software who need it for some purpose or other, and who (hopefully) understand

how to use it, but are not – and should not need to be – familiar with the source code or how it

is used to prepare a release package. Crucially, users should not be forced to use SCM or work

directly with the source code, but to obtain and use a released version.

Having said that, in an open-source model, nothing prevents users from inspecting the

source code, and (assuming they possess the requisite competence) fixing problems or even

implementing enhancements. If they provide their modifications to the developers and they

include them in the “official” source code, such users become contributors to the software, and

might even at some point join the developer team.

2.2 Source code vs. distribution

Depending on the nature of the source code, there tend to be significant differences between

the source code and the form and contents of a packaged release. Programming languages such

as C++ or Java are compiled languages, and the source code must be converted to a machine-

readable form using a compiler, before it can be used. There may also be testing code used

only for verifying that the main source code is free of errors, and such code is important during

the development lifecycle, but not to the users. There could also be peripheral material, such as

developer documentation, that forms part of the source code, but is useless to users and therefore

not included in the released versions.

The development lifecycle can includes steps to retrieve software dependencies, compile

the source code, process resources, run tests and report the outcome, package the relevant con-

tents, and publish the package to one or more repositories or websites. All of this should be

done in a workflow that is well documented and can be streamlined using build automation, to

5http://semver.org/
6http://keepachangelog.com/

162



make this process as efficient as possible. Many build automation tools are available – some

more flexible and efficient than others – e.g., GNU Make7, SCons8, and Gradle9.

A published release package can be distributed to users as a downloadable file on one or

more websites (including the hosting website itself), or through a package “repository” that

follows certain conventions to streamline the process of obtaining and installing the package on

a user’s device; these distribution workflows can themselves be managed by software platforms,

e.g. Apt10 (used in many Linux installations), NuGet11 (used in Microsoft Windows), or various

“app marketplaces” (such as Apple’s App Store, Google Play, and so on).

3 Speech corpora

We have described key concepts in software development, and we will now argue that speech

corpora can adopt similar conventions to turn from static, monolithic heaps of data into projects

that can be actively and collaboratively maintained and improved, and distributed as efficiently

as possible.

3.1 Annotations as source code

Speech data in a corpus is annotated using a variety of conventions, most prominently times-

tamped metadata such as transcriptions, phonetic segment boundaries, and labels. These anno-

tations can take the form of text files, which allows them to be stored and tracked by SCM tools

in much the same way as source code files.12

Researchers should of course be free to work with speech corpora, using whichever tools

they prefer, from ESPS and WaveSurver13 to Praat14 and ELAN15. However, many of the cor-

responding file formats have design limitations, such as a lack of explicit hierarchical structure

for annotations at different linguistic levels; for the sake of sustainability and flexibility, it is

therefore recommended to also provide the metadata in self-documenting, established serializa-

tion formats (XML16, JSON17, or YAML18), which are human-readable and easy to parse into

well-defined data structures using any major programming language.

3.2 Speech data as resources

In order to faithfully preserve all information stored in the acoustic signal, speech data should

never be compressed in a corpus using a lossy codec [4]. While an uncompressed pulse-code

modulation (PCM) sample encoding consumes a significant amount of storage space and trans-

fer bandwidth, there are OSS implementations of lossless audio codecs, notably FLAC19, which

7https://www.gnu.org/software/make/
8http://scons.org/
9https://gradle.org/

10https://wiki.debian.org/Apt
11https://www.nuget.org/
12A notable catch involves Praat’s TextGrid format, which explicitly numbers each interval. This means that

simply inserting a boundary can cause hundreds of lines to change, obscuring the nature of the modification.

Fortunately, this issue can be avoided by using the alternative “chronological” TextGrid format.
13http://www.speech.kth.se/wavesurfer/
14http://praat.org/
15https://tla.mpi.nl/tools/tla-tools/elan/
16https://www.w3.org/TR/xml/
17http://www.json.org/
18http://yaml.org/
19https://xiph.org/flac/

163



is free and widely supported, as well as others, such as WavPack20 or ALAC21.

One critical issue must be discussed regarding the storage of speech data using SCM such as

Git. Most SCM tools are designed to manage files consisting of (preferably short) lines of text.

Acoustic signals on the other hand are stored in a binary format, and consume several orders of

magnitude more storage space than their text-based metadata. This presents a problem for SCM,

as speech data is (a) inefficient to store and transfer with SCM operations, and (b) meaningless

to compare at the binary level against a reference when modified.

Some SCM tools have attempted to work around these limitations and enable the manage-

ment of large binary assets such as speech data; for example, several extensions to Git (such as

git-annex22 or Git LFS23) allow developers to track such data by introducing a parallel remote

storage system and transport layers to retrieve such the corresponding files, without “bloating”

the Git object store itself.

However it is important to realize that the audio data in a speech corpus will typically not

change much after the initial recording sessions that created it. This aspect makes it possible to

store the speech data separately from the corpus source code, and to retrieve them as resources

as required, from one or more remote storage locations, without tracking them explicitly.

3.3 Corpus development lifecycle

With this in mind, researchers or developers working with speech corpora can be described as

“users” of these corpora. If they enhance the metadata by creating new and useful annotations,

or correct any errors they find during their work, they can become contributors by providing

their modifications back to the corpus developers. This way, the corpus can be improved over

time, and new versions can be released.

Developers and expert users of a corpus can use build automation tools to retrieve and

package a corpus for distribution, and the resulting release can be published to a remote website

or repository. But normal users should not be required to use SCM to obtain the full source code

or data, or to “build” the corpus in order to use it; they can simply download a given version

from the internet in the most convenient and efficient format.

3.4 Media containers

Audio data is nearly always provided in some file format, such as RIFF Wave for PCM data,

which acts as a container and describes the sample encoding, and facilitates the playback, seek-

ing, and streaming of the audio. The more complex the data, the more important it is to choose

a suitable container format. FLAC-encoded data, for instance, can use a lightweight FLAC

container, but this format and its available metadata has certain limitations.

Where multimodal data, such as articulatory motion capture or video are available, a more

flexible media container format must be chosen that allows synchronized access to all streams.

Of course the container format itself should also be free to use and widely supported by OSS;

these conditions are met, for instance, by Ogg24 and Matroska25. Moreover, most modern web

browsers and media players (such as VLC26) can stream data from such containers without

requiring remote files to be downloaded first; this makes it much easier to casually “preview”

20http://wavpack.com/
21https://macosforge.github.io/alac/
22https://git-annex.branchable.com/
23https://git-lfs.github.com/
24https://www.xiph.org/ogg/
25https://www.matroska.org/
26http://www.videolan.org/vlc/

164



an available speech corpus and evaluate its suitability for a given scenario.

4 Case study

We use FLAC resources to efficiently store the speech data, and YAML for the corresponding

metadata, in a number of speech corpora used for text to speech (TTS) synthesis voices, in-

cluding the PAVOQUE corpus of expressive speech27 and the SEMAINE TTS databases28; an

example of the metadata in this format is shown in Figure 1.

For flexibility and efficiency in the development cycle and use of these corpora, we use

this FLAC+YAML convention, and we provide a portable, lightweight implementation of this

convention in the form of a Gradle plugin.29 Using this plugin, the data is retrieved from the

hosting website (which is declared as a custom repository), cached locally, and processed to

package or convert the data and metadata into ESPS label files or Praat TextGrids. The corpora

are also declared as data dependencies for the corresponding TTS voices30, which integrates

the speech corpus management into the continuous delivery workflow for synthesis voices in

MaryTTS31.

A more challenging use case is presented by multimodal speech corpora such as the MOCHA-

TIMIT corpus [3], which contains data recorded with electromagnetic articulography (EMA),

electroglottography (EGG), and electropalatography (EPG), as well as audio recordings from a

number of English speakers. The audio and EGG signals can be compressed with FLAC, but

with the many channels of EMA (sampled at a different rate), we have to use the more flexible

Matroska container to store synchronized streams from all modalities in a single file. The range

of sample values for the EMA, however presents a challenge; most audio codecs will clip val-

ues outside the [−1,1] range, but we can rescale each channel and explicitly store the range to

restore the original data during analysis.

Another interesting detail is the fact that one project [5] has used two of the MOCHA

corpus subsets, discovered errors in the metadata, and published corrected files; we can use

custom tasks to retrieve and merge these corrections as part of our automated build, producing

a new version of the corpus subset. The entire workflow has been published online32, and a

simple experiment using the packaged corpus is available as well.33.

5 Conclusion

We have discussed the DevOps approach, and some of the main parts of the software develop-

ment lifecycle. We argue by analogy that speech corpora can be managed like software projects.

Large binary assets that change rarely can be stored in remote repositories and retrieved auto-

matically, while metadata, which is textual in nature and could be modified more frequently,

can be managed like source code.

Moreover, we draw distinctions between developers and users of a corpus, and between

the source data and published versions of distribution packages, which can be automatically de-

ployed and retrieved. Finally, we demonstrate that these conventions can be used to streamline

27https://github.com/marytts/pavoque-data
28https://github.com/marytts/dfki-semaine-data
29https://github.com/m2ci-msp/gradle-flaml-plugin
30e.g., https://github.com/marytts/voice-dfki-pavoque-styles or https://github.com/

marytts/voice-dfki-spike
31http://mary.dfki.de/
32https://github.com/m2ci-msp/mocha-msak0-data
33https://github.com/m2ci-msp/mocha-msak0-demo

165



- prompt: spike0008

text: Ach ja?

style: angry

start: 27.0

end: 28.92

segments:

- {lab: H#, end: 0.280902}

- {lab: '?', end: 0.324898}

- {lab: a, end: 0.408238}

- {lab: x, end: 0.475}

- {lab: j, end: 0.61}

- {lab: 'a:', end: 0.963273}

- {lab: _, end: 1.915}

Figure 1 – An example of metadata for one utterance from the PAVOQUE corpus in YAML format.

speech corpus management, and to model dependencies on specific versions of a corpus for

efficient, reproducible research.

References

[1] JABBARI, R., N. BIN ALI, K. PETERSEN, and B. TANVEER: What is DevOps? In

17th International Conference on Agile Software Development. Edinburgh, UK, 2016.

doi:10.1145/2962695.2962707.

[2] ROSENBERG, A.: Rethinking the corpus: Moving towards dynamic linguistic resources. In

Interspeech, pp. 1392–1395. Portland, OR, USA, 2012. URL http://www.isca-speech.

org/archive/interspeech_2012/i12_1392.html.

[3] WRENCH, A. A.: A multi-channel/multi-speaker articulatory database for con-

tinuous speech recognition research. PHONUS, 5, pp. 1–13, 2000. URL http:

//www.coli.uni-saarland.de/groups/WB/Phonetics/contents/phonus-pdf/

phonus5/Wrench_PHONUS5.pdf.

[4] SIEGERT, I., A. F. LOTZ, L. L. DUONG, and A. WENDEMUTH: Measuring the impact of

audio compression on the spectral quality of speech data. In 27th Conference on Electronic

Speech Signal Processing (ESSV), pp. 229–236. Leipzig, Germany, 2016.

[5] JACKSON, P. J. B. and V. D. SINGAMPALLI: Statistical identification of articulation con-

straints in the production of speech. Speech Communication, 51(8), pp. 695–710, 2009.

doi:10.1016/j.specom.2009.03.007.

166


	Ingmar Steiner: A DevOps Manifesto for Speech Corpus Management

