
LITTLE DROP OF MULLIGATAWNY SOUP, MISS SOPHIE?
AUTOMATIC SPEECH UNDERSTANDING PROVIDED BY PETRI NETS

Markus Huber1,2, Ronald Römer1, Matthias Wolff1

1BTU Cottbus-Senftenberg, 2InnoTec21 GmbH Leipzig

markus.huber@b-tu.de

Abstract: This paper contributes to seamless automata-based integration of speech
recognition and natural language understanding. We describe a new transducer
between sequential utterances and partially-ordered semantic structures which can
be composed with finite state machines. After a brief discussion of the limitations of
previous approaches and some mathematical preliminaries, we will recapitulate the
application of Petri net transducers (PNTs) to the bidirectional translation between
sequences and partial orders. Then we will show how recursive hierarchical PNTs
can be used to create partially-ordered semantic structures of arbitrary width and
how to build a seamless speech signal-to-semantics recognition network.

1 Introduction

val unit

LDIM

DIG val m

o komma val

1 CN2

t

2

Figure 1 – Semantic structure “1.2
meters” (cf. figure 2 of [1]).

Speech based cognitive user interfaces require a bidirectional
translation between speech signals and representations of speech
meaning. While low-level speech representations (phone strings,
words, texts) are sequential, speech semantics is, in general, non-
sequential. Therefore we use labelled partial orders as semantic
carriers. In [1] we proposed an algorithm which creates such
structures from specially tailored speech recogniser output strings.
The drawback of this method is that we must prematurely decide

for an output string (or a set of output strings) and thus cannot
benefit from semantic prior knowledge. We showed that Petri
net transducers (PNTs) can overcome this problem as the they
can (a) bidirectionally translate between sequential utterances and
partially-ordered semantic structures [2], (b) be composed with
finite state machines [3], and (c) also process weights [4, 5].

Translating totally-ordered sequences to partially-ordered
semantic carriers involves a non-trivial reduction of structural constraints, namely removing the
order between children of ordered parents. In figure 1 the nodes 1, komma and 2 are not ordered
while the nodes val preserve the order of the corresponding parts inside the utterance. In [3, 2]
we proposed an approach based on the separation of input and output words. However, this only
works with acyclic language models which are not even sufficient for simple applications in very
limited domains (cf. [1]). If using a cyclic language model, the syntax-semantics transducer
must be able to create partially-ordered semantic structures of potentially unlimited width. We
will show that recursive hierarchical PNTs have this crucial capability.

2 Mathematical Preliminaries

The set of all multisets over a set X is the set N0
X of all functions f : X → N0. Addition + on

multisets is defined by (m+m′)(x) = m(x)+m′(x). The relation ≤ between multisets is defined

122

through m ≤ m′ ⇐⇒∃m′′(m+m′′ = m′). We write x ∈ m if m(x)> 0. A set A ⊆ X is identified
with the multiset m satisfying (m(x) = 1 ⇐⇒ x ∈ A)∧ (m(x) = 0 ⇐⇒ x 6∈ A). A multiset m

satisfying m(a)> 0 for exactly one element a we denote by m(a)a.
Given a binary relation R ⊆ X ×Y and sets A ⊆ X and B ⊆ Y , we denote the image of A

by R(A) = {y ∈ Y | ∃x ∈ A : (x,y) ∈ R} and the preimage of B by R−1(B) = {x ∈ X | ∃b ∈ B :
(x,b) ∈ R}. We denote by Dom(R) = R−1(Y) the domain of R and call R(X) the image of R. For
X ′ ⊆ X and Y ′ ⊆ Y the restriction of R onto X ′×Y ′ is denoted by R|X ′×Y ′ .

Let A be a finite set of symbols called an alphabet. A step over A is a multiset over A . A
step sequence over A is an element of (N0

A)∗ where ε denotes the empty step sequence.
A net is a 3-tuple N = (P,T,F), where P is a finite set of places, T is a finite set of transitions

disjoint from P and F ⊆ (P×T)∪ (T ×P) is the flow relation. A marking of a net assigns to
each place p ∈ P a number m(p) ∈ N0 of tokens, i.e. a marking is a multiset over P representing
a distributed state. A marked net is a net N = (P,T,F) together with an initial marking m0.

A place/transition Petri net (PT-net) is a 4-tuple N = (P,T,F,W), where (P,T,F) is a net
and W : (P×T)∪ (T ×P)→ N0 is a flow weight function satisfying W (x,y)> 0 ⇔ (x,y) ∈ F .
For (transition) steps τ over T we introduce the two multisets of places •τ(p) = ∑t∈T τ(t)W (p, t)
and τ•(p) = ∑t∈T τ(t)W (t, p). A transition step τ can occur in m if m ≥ •τ . If τ occurs in m,

the resulting marking m′ is defined by m′ = m− •τ + τ•. We write m
τ

−→ m′ to denote that τ can
occur in m and its occurrence leads to m′. A step execution in m is a finite step sequence over T

τ1 . . .τn such that there are markings m1, . . . ,mn with m
τ1−→ m1

τ2−→ . . .
τn−→ mn. The markings

which can be reached from the initial marking m0 via step executions are called reachable.
A directed graph is a pair G = (V,→), where V is a finite set of nodes and →⊆V ×V is a

binary relation over V , called the set of edges. For a node v∈V its preset is the set •v=→−1 ({v})
and its postset the set v• =→ ({v}). A path is a sequence of (not necessarily distinct) nodes
v1 . . .vn (n > 1) such that vi → vi+1 for i = 1, . . . ,n− 1. A path v1 . . .vn is a cycle if v1 = vn.
A directed graph is called acyclic if it has no cycles. An acyclic directed graph (V,→′) is an
extension of an acyclic directed graph (V,→) if →⊆→′.

A partial order over a set V is a binary relation <⊆V ×V which is irreflexive (∀v∈V : v 6< v)
and transitive (∀u,v,w ∈V : (u < v∧ v < w)⇒ u < w). We identify a finite partial order < over
V with the directed graph (V,<). Given a partial order po = (V,<) we call two nodes v,v′ ∈V

independent if v 6< v′ and v′ 6< v. By co< ⊆V ×V we denote the set of all pairs of independent
nodes of V . A set A ⊆V of pairwise independent nodes is called an antichain. The width of po

is defined by wd(po) = sup{|A| | A is antichain in po}.
A labelled partial order (LPO) over a set X is a 3-tuple (V,<, l), where (V,<) is a partial

order and l : V → X is a labelling function on V . In most cases, we only consider LPOs up to
isomorphism, i.e. only the labelling of nodes is of interest, but not the node names. Two LPOs (V,
<, l) and (V ′,<′, l′) are isomorphic if there is a bijective renaming function I : V →V ′ satisfying
l(v) = l′(I(v)) and v < w ⇔ I(v) <′ I(w). In figures, we normally do not show the names of
the nodes of an LPO, but only their labels and we often omit transitive arrows for a clearer
presentation. A step-wise linear LPO is an LPO (V,<, l) where the relation co< is transitive.
The maximal sets of independent nodes are called steps. The steps of a step-wise linear LPO
are linearly ordered. Thus, step-wise linear LPOs can be identified with step sequences. A
step-linearisation of an LPO lpo is a step-wise linear LPO lpo′ which is an extension of lpo.

We use LPOs over T to represent single non-sequential runs of PT-nets, i.e. the nodes of
an LPO represent transition occurrences. For a marked PT-net N = (P,T,F,W,m0) an LPO
lpo = (V,<, l) over T is an LPO-run if each step-linearisation of lpo is a step execution of N in
m0. If an LPO-run lpo = (V,<, l) occurs in a marking m, the resulting marking m′ is defined by

m′ = m−∑v∈V
•l(v)+∑v∈V l(v)•. We denote the occurrence of an LPO-run lpo by m

lpo
−→ m′.

123

par

ε:a

s

ε:b

1

sr

(a) – Generator Nseq with sequential run.

p′
b̃ s′

b:b

p′a
t j

p′ã r′

a:a

p′b

t f1

r′

t j

s′

t f

(b) – Transducer Npar with non-sequential run.

Figure 2 – Example Petri net transducers.

3 Petri Net Transducers

According to [4] Petri Net Transducers are PT-nets where each transition is augmented with an
input and an output label. As with weighted finite-state transducers each transition additionally
carries a weight drawn from a bisemiring. For this article the weights are due to limited space
not of interest and we omit them from the definition.

A Petri Net Transducer (PNTs) is defined as a tuple N = (P,T,F,W, pI, pF ,Σ,σ ,∆,δ), where

• (P,T,F,W,m0) with m0 = pI is a marked PT-net (called the underlying PT-net), pI ∈ P is
the source place satisfying •pI = /0 and pF ∈ P is the sink place satisfying pF

• = /0,

• Σ is a set of input symbols and σ : T → Σ∪{ε} is the input mapping,

• ∆ is a set of output symbols and δ : T → ∆∪{ε} is the output mapping.

The marking pI is called the initial marking and the marking pF is called the final marking. A
PNT is called clean if the final marking where only the place pF is marked by one token is the
only reachable marking m with m(pF) > 0, i.e. the only reachable marking which marks pF .
Cleanness ensures that PNT semantics are closed under (sequential) product and closure.1

Figure 2 shows on the left the generator Nseq producing the sequence ab resulting from the
projection of its run through δ . On the right is the transducer Npar with its so-called concurrent

transitions r′ and s′. Transitions with no symbols are so-called ε-transitions having ε as input
and output. After projecting through σ resp. δ ε-labelled nodes get deleted together with their
adjacent edges. Hence Npar reads and writes the partial order ({a,b}, /0).

Since Npar can read its input in any order Nseq – where the output is ordered – can be
composed with it. In figure 3 the composition Nseq ◦Npar is shown. The transducer Npar is

1That is not completely right since transitions without input places are still enabled when the final marking has
been reached. However for the transducer to be clean such transitions cannot have output places as well. Therefore
we forbid such transitions which is no real restriction for any practical example.

p′
b̃

s′

b:b

p′a

t j

p′ã

r′

a:a

p′b

t f

1

pa r

ε:a

s

ε:b

1

(a) – Union of places.

p′
b̃

s′

b:b

p′a

t j

p′ã

r′

a:a

p′b

t f

1

pa r,r′

ε:a

s,s′

ε:b

1

(b) – Merging of transitions.

p′
b̃

s′

b:b

p′a

t j

p′ã

r′

a:a

p′b

t f

1

pa r,r′

ε:a

s,s′

ε:b

1

tI

tF

(c) – Adding of ε-transitions.

Figure 3 – Composition of Nseq and Npar.

124

ε:a

ε:b

1

a:ε

b:ε

(a) – Sequential separation of input and output.

ε:b

ε:a

b:εa:ε

1

(b) – Parallel separation of input and output.

Figure 4 – PNTs translating from the sequence ab to the partial order ({a,b}, /0).

depicted top-down and the generator Nseq in the middle from right to left. As a first step the
places of both PNTs are united in figure 3a. In the next step transitions with matching symbols
get merged. As one can see in figure 3b the transitions r and r′ as well as s and s′ have been
merged and the new transitions inherit its arcs from both PNTs, input symbols are taken from
Nseq and output symbols from Npar. As a last step transitions with ε-output from Nseq and ε-input
from Npar are added with their arcs and the two PNTs are glued together with new source and
sink places as well as an initial transition tI and a final transition tF .

Note that the independence of r′ and s′ from Npar is not preserved during the composition.
The ordering of r and s from Nseq – enforced by the place pa and its arcs – wins and the resulting
generator produces the sequence ab. In general composition can add order but cannot remove it.
For a semantics-syntax transducer this is sufficient (cf. [6]).

4 Translation from Sequences to Partial Orders

Since the aim of this paper is to translate from sequences to partial orders the result from the
last section is not satisfying. Clearly the problem arises from the fact that input and output in
Npar are processed by the same transitions so dependency from the input by the means of Nseq is
propagated to the output of Nseq ◦Npar.

The natural solution to this is separating the processing of the input from the processing of
the output within Npar as shown in the following subsection. In subsection 4.2 we introduce an
alternative solution where transitions can be isolated from one another.

4.1 Separation of Input and Output

One possible way to achieve the separation is to have a PNT processing the input sequentially
followed by a PNT processing the output like in figure 4a. This idea was shown in detail in [2].
When the run of the PNT is projected through σ then its second part is deleted and the sequence
ab remains. Projecting the run through δ deletes the first part and the partial order ({a,b}, /0)
remains. Composition with Nseq does not alter the output transitions leaving them concurrent.

Another way is to separate input and output in parallel as shown in figure 4b. Here the input
is processed in the upper part and the output in the lower part of the transducer. Projections of its
run lead to the same results as in the case of sequential separation.

4.2 Hierarchical Petri Net Transdcuers

Instead of separating input and output one can also try to separate transitions from one another.
This can be done with hierarchical PNTs which introduce a refinement operation where a
transition is replaced by a PNT. Restriction of the runs then deletes edges which cross the
borders between replacement PNTs resulting in the preservation of independence.

Based on the notations from [7] one can define for a given PNT N0 = (P0,T0,F0,W0, pI, pF ,

Σ0,σ0,∆0,δ0) a hierarchical PNT (hPNT) as a 5-tuple H = (N0,N ,ρ,Fc,Wc) where

125

r′

a:a

1

(a) – Refinement PNT N1.

p′
b̃ tb

p′ap′ã
ta

p′b

1

(b) – Initial PNT N0.

s′

b:b

1

(c) – Refinement PNT N2.

ρ

ρ

Figure 5 – The hierarchical PNT Hpar where the transitions ta and tb get refined by N1 resp. N2.

• N0 is the initial PNT,

• N = {N1, . . . ,Nk} is a family of refinement PNTs where P0, . . . ,Pk resp. T0, . . . ,Tk are
pairwise disjoint,

• ρ : T0 →{1, . . . ,k} is a partial refinement function which associates transitions from the
initial PNT with PNTs from N . A transition t ∈ T0, if t ∈ Dom(ρ) holds, is refined by the
PNT Nρ(t). Any transition t ∈ T0 for which t 6∈ Dom(ρ) holds is called simple.

• Fc ⊆ (P0 ×
⋃k

i=1 Ti)∪ (
⋃k

i=1 Ti ×P0) is the crossing flow relation which allows to connect
transitions from refinement PNTs to places from the initial PNT and

• Wc is the corresponding crossing flow weight function as introduced for PT-nets in section 2.

In figure 5 the example hPNT Hpar is shown with its initial PNT in figure 5b and its refinement
PNTs for the concurrent transitions ta resp. tb in figures 5a and 5c. We demonstrate the refinement
operation on transition ta. We substitute ta with two new ε-transitions ita (put into the set •T) and
ota (put into the set T •) where ita only inherits the incoming arcs of ta and ota only its outgoing
arcs. Then we connect ita with place pI1 since ρ(ta) = 1 and place pF1 with transition ota . After
also refining tb we have a PNT like Npar from figure 2b with four additional ε-transitions which
do not alter input or output. The formal procedure of refining is given in the following box.

For a given hPNT H = (N0,N ,ρ,Fc,Wc) let K be the image of ρ and set K0 = K∪{0}. Let
Ts be the set of simple transitions of N0, Fs the flow relation of N0 restricted to all its places
and simple transitions and Ws the flow weight of N0 restricted to all its places and simple
transitions. H defines a PNT N = (P,T,F,W, pI, pF ,Σ,σ ,∆,δ) with

• P =
⋃

i∈K0
Pi,

• T = Ts ∪
⋃

i∈K Ti ∪
•T ∪T • where

– •T contains a transition it for every transition t ∈ Dom(ρ) and

– T • contains a transition ot for every transition t ∈ Dom(ρ),

• F = Fs ∪Fc ∪
⋃

i∈K Fi ∪
•F ∪F• with

– •F = {(p, it) ∈ P0 ×
•T | (p, t) ∈ F0}∪{(it , pIρ(t)

) | it ∈
•T} and

– F• = {(ot , p) ∈ T •×P0 | (t, p) ∈ F0}∪{(pFρ(t)
,ot) | ot ∈ T •},

• W =Ws +Wc +∑i∈K Wi +
•W +W • with

– •W = ∑(p,it)∈P0×•T W0(p, t)(p, it)+∑it∈•T (it , pIρ(t)
) and

– W • = ∑(ot ,p)∈T •×P0
W0(t, p)(ot , p)+∑ot∈T •(pFρ(t)

,ot),

• pI = pI0 and pF = pF0 ,

126

• Σ =
⋃

i∈K0
Σi,

• σ |Ts
≡ σ0, ∀i ∈ K : σ |Ti

≡ σi, σ |•T ≡ ε , σ |T • ≡ ε ,

• ∆ =
⋃

i∈K0
∆i,

• δ |Ts
≡ δ0, ∀i ∈ K : δ |Ti

≡ δi, δ |•T ≡ ε , δ |T • ≡ ε .

The resulting PNT N is called the interface of H and the set of runs of N is per definition the
set of runs of H. Since an hPNT defines a PNT any hPNT can be used as a refinement PNT
justifying the notation of hierarchical PNTs. Also an hPNT is called clean if its interface is clean
which is obviously the case when the initial PNT and all used refinement PNTs are clean.

Composition of a PNT with an hPNT is always done against its interface. There is only a
subtle change in the procedure since the result is an hPNT again. We will show the example
Nseq ◦Hpar = H ′. At first the places Pseq and P0 are united resulting in P′

0. Then matching
transitions get merged and put accordingly into the sets T ′

0, T ′
1 or T ′

2. Since all places from Nseq

are now in P′
0 the inherited arcs from Fseq and Wseq go into F ′

c and W ′
c . Then transitions with

ε-output from Tseq are added to T ′
0, transitions with ε-input from T0, T1 and T2 are added to H ′

accordingly and the two PNTs are glued together as described in section 3. At last Fc and Wc

are adjusted and taken over to H ′ as well as ρ . Composition of two hPNTs is subject to further
research since it is not clear what the desired result could be.

Note that again the independence of r′ and s′ from Hpar is not preserved within the result of
the composition. Considering input and output of the interface nothing changed.

However, with hPNTs there are other possibilities for the definition of input and output.
Given an hPNT H, its interface N and a run lpo = (V,<, l) of N we can exclude dependencies
by simply restricting < which is defined on V ×V to only respect dependencies of interest. So
let K be the image of ρ and set K0 = K ∪{0}. Then for any i ∈ K0 the restriction of < onto
l−1(Ti)× l−1(Ti) eliminates all edges between nodes that are not both labelled by a transition
from Ti. To preserve the edges added by the refinement we have to include the sets •T and T •.
So if we restrict < onto

⋃
i∈K0

(Ti ∪
•T ∪T •)× (Ti ∪

•T ∪T •) we isolate the refinement PNTs
from each other and besides the connections resulting from the refinement also from N0.

For our example of Nseq◦Hpar the restriction of its run eliminates the edge between the nodes
labelled by r,r′ resp. s,s′ which was introduced by the composition operation. The projection
through δ then yields the partial order ({a,b}, /0).

r

s

r

s

r

s

n-times

Figure 6 – LPO lpoa with width n.

Now consider lpoa from figure 6. The set of all nodes la-
belled by s is an antichain of cardinality n. Two nodes labelled
by r are always ordered. Any set of more than n nodes must
contain at least one node labelled by r but there are at most
n− 1 nodes which are independent of such a node. Clearly
lpoa has width n. Note that the set of all nodes labelled by r

is a sequence of length n.
For PNTs there exists the well-known closure operation

which creates some cycle inside the PNT. This way a single
transition is sufficient for producing arbitrarily long sequences.

On the other hand a PNT producing an antichain for every n ∈ N does not exist since it would
need to have arbitrarily many concurrent transitions. So there can be no PNT producing LPOs
like in figure 6 for every n ∈ N. An hPNT would need to have arbitrarily many refinement PNTs
to eliminate arbitrarily many unwanted edges. So there can be none either.

127

5 Recursive Hierarchical Petri Net Transducers

While a PNT as a finite object can produce arbitrarily long sequences the production of arbitrarily
wide LPOs requires a potentially infinite object. Extending refinement to a recursive operation
like for example the Petri box calculus [8] did combined with a termination condition allows us
to add concurrent transitions on demand while the resulting transducer stays a finite object.

A recursive hPNT (rhPNT) is a 7-tuple R = (N0,N ,ρ,Fc,Wc,Tt ,Ti) where

• (N0,N ,ρ |T ′ ,Fc,Wc) is an hPNT (called the underlying hPNT) where T ′ = {t ∈ T0 | t 6∈
Dom(ρ)∨ρ(t) 6= 0} is the set of those transitions which are simple or do not get refined
by the initial transducer (called recursive transitions),

• ρ is therefore a partial function on T0 where now also the value 0 is allowed,

• Tt ⊆ T is a set of trigger transitions where T =
⋃

i∈{0}∪ρ(T0)Ti and

• Ti ⊆ T is a set of ignore transitions.

s′

b:b

tr

r′

a:a

1

ρ

Figure 7 – Recursive hPNT Rω .

In figure 7 the example rhPNT Rω is shown where the recur-
sive transition tr gets refined by the initial PNT. All other
transitions are simple and there are no refinement PNTs. At
a first glance it seems obvious how Rω can have LPO-runs
where for arbitrary n ∈ N a sub-LPO isomorphic to lpoa from
figure 6 exists. However, the formal definition is far from ob-
vious since the general interface would be an infinite object.
Also composition with PNTs which are no state machines or
even hPNTs or rhPNTs is subject to further research.

We describe the composition Nseq
2 ◦ Rω with Nseq

2 =
Nseq ⊗Nseq where ⊗ is the concatenation of PNTs. Nseq

2 generates the sequence abab. The set
of trigger transitions of Rω is Tt = {r′} its set of ignore transitions is Ti = {r′,s′}. The initial
interface of Rω is the interface of its underlying hPNT. We start with the places as before and
continue with merging of transitions. This time we must respect their order inside Nseq

2. We
merge the first transition with output a with r′ and the first transition with output b with s′. Since
r′ is a trigger transition we mark it. When we then try to merge the second transition with output
a with r′ the marked trigger transition tells us to do a recursive refinement first. During this
refinement an isomorphic copy of Rω where the places and transitions are renamed is put as a
new refinement PNT into N . The refinement function ρ is adjusted to associate tr accordingly
and the interface is regenerated. We resume the merging of the second transition with output
a. Since we already did a recursive refinement and r′ is an ignore transition the only matching
transition is the corresponding one from the new refinement PNT which we mark since it is a
trigger transition there. Since s′ is also an ignore transition the second transition with output
b can only be merged with the matching one of the new refinement PNT. After completing
the composition as before we have an rhPNT where we can use the restriction technique from
subsection 4.2 to get an output isomorphic to lpoa from figure 6 with n = 2.

6 Outlook

We introduced recursive hierarchical Petri net transducers for the translation of totally-ordered
utterances into partially-ordered semantic structures for the composition with a speech recogniser
build of finite state machines. The semantic structures can be of arbitrary width when a cyclic
language model is used. Due to results from [4, 5] this is also possible in a weighted setting.

128

We can now compute all weighted semantic structures corresponding to a speech signal
within a hierarchical speech processing system without any premature decision (cf. [2]) even for
semantic structures like in figure 1.

Moreover we are able to prime the recognition network by composition with a semantic
structure representing an expectation on the next input. This expectation is a truly semantic one
but adjusts the recogniser down to all low-level speech representations.

So the Bavarian question “A Supp’n?” (which happens to be the abbreviation of Automatic
Speech Understanding provided by Petri Nets) can yield the same recogniser adjustments as the
title of this paper since their semantics are the same.

References

[1] WIRSCHING, G. and M. WOLFF: Semantische dekodierung von sprachsignalen am beispiel

einer mikrofonfeldsteuerung. In R. HOFFMANN (ed.), Elektronische Sprachsignalverar-

beitung 2014, Tagungsband der 25. Konferenz Dresden, 26. - 28. März 2014, pp. 104 – 109.
2014.

[2] LORENZ, R. and M. HUBER: Realizing the Translation of Utterances into Meanings by

Petri Net Transducers. In P. WAGNER (ed.), Proceedings of ”Elektronische Sprachsig-

nalverarbeitung (ESSV)”, vol. 65 of Studientexte zur Sprachkommunikation, pp. 103 – 110.
2013.

[3] LORENZ, R. and M. HUBER: Petri net transducers in semantic dialogue modelling. In
M. WOLFF (ed.), Proceedings of ”Elektronische Sprachsignalverarbeitung (ESSV)”, vol. 64
of Studientexte zur Sprachkommunikation, pp. 286 – 297. 2012.

[4] LORENZ, R., M. HUBER, and G. WIRSCHING: On weighted petri net transducers. In
G. CIARDO and E. KINDLER (eds.), Application and Theory of Petri Nets and Concurrency

- 35th International Conference, PETRI NETS 2014, Tunis, Tunisia, June 23-27, 2014.

Proceedings, vol. 8489 of Lecture Notes in Computer Science, pp. 233–252. Springer,
2014. doi:10.1007/978-3-319-07734-5_13. URL http://dx.doi.org/10.1007/

978-3-319-07734-5_13.

[5] LORENZ, R.: Modeling quantitative aspects of concurrent systems using weighted petri

net transducers. In R. R. DEVILLERS and A. VALMARI (eds.), Application and Theory of

Petri Nets and Concurrency - 36th International Conference, PETRI NETS 2015, Brussels,

Belgium, June 21-26, 2015, Proceedings, vol. 9115 of Lecture Notes in Computer Science,
pp. 49–76. Springer, 2015. doi:10.1007/978-3-319-19488-2_3. URL http://dx.doi.

org/10.1007/978-3-319-19488-2_3.

[6] HUBER, M. and R. RÖMER: Modellierung des Semantik-Syntax grenzübergangs kognitiver

Systeme am Beispiel des ”Mouse-Maze”-Problems. In G. WIRSCHING (ed.), Proceedings of

”Elektronische Sprachsignalverarbeitung (ESSV)”, Studientexte zur Sprachkommunikation,
pp. 232 – 239. 2015.

[7] ZUBEREK, W. M. and I. BLUEMKE: Hierarchies of place/transition refinements in petri

nets. In Proceedings of ”Conference on Emerging on Technologies and Factory Automation”,
pp. 355–360. B b, 1997.

[8] BEST, E., R. R. DEVILLERS, and J. G. HALL: The box calculus: a new causal algebra

with multi-label communication. In G. ROZENBERG (ed.), Advances in Petri Nets 1992, The

DEMON Project, pp. 21 – 69. Springer, 1992.

129

	Markus Huber, Ronald Römer & Matthias Wolff: Little Drop of Mulligatawny Soup, Miss Sophie? Automatic Speech Understanding provided by Petri Nets

