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Abstract: The project AcListant® (Active Listening Assistant), which uses 
automatic speech recognition to recognize the commands in air traffic controller to 
pilot communication, has achieved command recognition rates above 95%. These 
high rates were obtained with an Assistance-Based Speech Recognition (ABSR). An 
Arrival Manager (AMAN) cannot exactly predict the next actions of a controller, but 
it knows which commands are plausible in the current situation and which not. 
Therefore, the AMAN generates a set of possible commands every 20 seconds, 
which serves as context information for the speech recognizer. 

Different validation trials have been performed with controllers from Düsseldorf, 
Frankfurt, Munich, Prague and Vienna in DLR’s air traffic simulator in 
Braunschweig from 2014 to 2015. Decision makers of air navigation providers 
(ANSPs) are primary not interested in high recognition rates, respectively, low error 
rates. They are interested in reducing costs and efforts. Therefore, the validation 
trials, that were performed at the end of 2015, aimed at quantifying the benefits of 
using speech recognition with respect to both efficiency and controller workload. 
The paper describes the experiments performed to show that with ABSR support 
controller workload for radar label maintenance could be reduced by a factor of three 
and that ABSR enables fuel savings of 50 to 65 liters per flight. 

1 Introduction 

Recently, the venture capital funded project AcListant® has achieved command error rates 
below 1.7 %, resulting in command recognition rates above 95% [1]. The application domain 
was air traffic controllers’ communication to pilots. Controllers do not require that each word 
of their utterance e.g., “good morning lufthansa three two bravo descend now altitude four 
correction three thousand feet” is recognized. However, they want that the relevant concepts 
are correctly extracted, i.e., in the example “DLH32B” for the name of the aircraft, “DE-
SCEND” as the command type and “3000” as the target value of the command. The whole 
command, which must be correctly recognized, is “DLH32B DESCEND 3000”. This requires 
a reliable speech recognition system. Our approach, Assistance-Based Speech Recognition 
(ABSR), jointly developed by DLR and Saarland University, uses speech recognition embed-
ded in a controller assistant system, which provides a dynamic minimized world model to the 
speech recognizer. The speech recognizer and the assistant system improve each other. The 
latter significantly reduces the search space of the first one, resulting in low command recog-
nition error rates.  

Decision makers of airlines and ANSPs are not even interested in high command recogni-
tion rates. They are more interested in dollars and euros. Therefore, DLR performed end of 
2015 validation trials with eight controllers from Austro Control and German air navigation 
provider DFS in Braunschweig. The aim was to quantify the benefits of using speech recogni-
tion with respect to both efficiency and controller workload [2]. 

In section 2 we present the background of our research, in sect. 0 we present ABSR, i.e., 
the integration of an assistant system to improve recognition rate of an ASR system (automat-

114



 

 

ic speech recognition). Then we present the experimental setup for quantifying benefits of 
ABSR. Section 5 presents the results before the conclusions follow. 

2 Background 

First integrations of ASR in air traffic control (ATC) systems especially for training started in 
the late 80s [3]. Nowadays enhanced ASR systems are used in ATC training simulators to 
replace expensive pseudo pilots. Although ASR systems are widely used in normal life (e.g., 
Siri®, telephone dialog systems, and interface for car navigation systems) and ATC phraseol-
ogy is standardized, recognition and understanding controller pilot communication is still a 
big challenge and not solved satisfactory. Reasons are ATC vocabulary and syntax, as well as 
the variety of accents, speakers, and communication channels with different characteristics 
and especially controllers’ needs to deviate from standard phraseology [5]. Cordero et al. 
(2012) reported of word detection rates not above 20% with different Commercial-off-the-
shelf (COTS) recognizers [6]! 

One promising approach to improve ASR performance is using context knowledge re-
garding expected utterances. These attempts go back to the 80s [7], [8]. This information may 
heavily reduce the search space and lead to less miss recognitions [4]. Our approach (Assis-
tant Based Speech Recognition = ABSR) uses the output of an assistant system, i.e., DLR’s 
AMAN 4D-CARMA [9], as context information. An “Assistant System” analyses the current 
situation of the airspace and predicts possible future states, the input of the “Hypotheses Gen-
erator” to predict the set of possible commands. This dramatically reduces the search space of 
the “Lattice Generator” [10], [11]. ABSR is detailed in the next section. 

3 Assistance-based Automatic Speech Recognition  

This section describes the standard ASR system and then shows how the context information, 
which is available and provided by the ATC assistance system (4D-CARMA in Figure 1), can 
be used to improve the recognition performance. This section also shows how plausibility 
values can be derived from the proposed speech recognition system as a confidence measure 
of its output. We use the public domain speech recognition engine KALDI [12], [13]. 

3.1 Automatic Speech Recognition 

Automatic speech recognition is the task of translating spoken words captured by an audio 
signal into text also known as speech-to-text. Building an ASR system generally requires the 
development of two main components, namely, an acoustic model, which learns the statistical 
mapping between the audio signal, generally represented as overlapping feature vectors, and 
the phonemes or other linguistic units that form speech. The second component is the lan-
guage model, which is responsible of modeling the word sequences and learning their proba-
bility of occurrence.  

In AcListant®, the acoustic model was trained using the standard Hidden Markov Models 
(HMM) approach, which uses Gaussian Mixture Models as emission distributions, whereas 
we used a Context Free Grammar (CFG) as language model [10], which was developed based 
on the standard ATC phraseology manual [14] as well as common deviations observed in var-
ious pre-trials. We have also considered N-gram language models in our research [11].  

3.2 Improving ASR using Context Information 

The ATC assistance system bases its proposed command sequence on the state of a given air-
space sector and its history. This state is primarily derived from radar information about the 
airspace as well as aviation domain knowledge. More precisely, the Hypotheses Generator in 
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Figure 1 creates with the output of the assistant system a set of commands which are plausible 
in the current airspace situation. The output represents the dynamic context, and is trans-
formed into the search space for the ASR system. Dynamic context information is updated 
with 0.1 Hertz and typically contains a few hundred commands.  

Speech Recognizer

4D-CARMA – Speech Components

Hypotheses Generator

Plausibility Checker

Command Monitor

Speech Recorder

Lattice Generator

Speech Recognizer

Command Extractor

4D-CARMA – Core Components

Radar Interface

Scheduler

Conformance Monitor

...

 
Figure 1 - Components of Assistant Based Speech Recognition [1], in green components of 4D-
CARMA, in yellow components of core speech recognizer 

When incorporating the context information into the ASR system, different factors are 
taken into account; in particular, the “run-time vs performance” compromise given that the 
resulting system should be able to perform online in a near real-time setting, i.e., the control-
ler expects the recognized command within 3 seconds in at least 90% of the cases. We have 
investigated two different methods for integrating the context information into the speech 
recognition pipeline, namely, a pre-recognition approach [10], which uses the context infor-
mation to automatically adapt the CFG to only cover utterances currently deemed possible. 
Then, this grammar is transformed into a Weighted Finite State Transducer (WFST), which is 
subsequently used to recreate the ASR search space. The second method is based on a 
Weighted Levenshtein Distance (WLD) [11], which extracts the ATC concepts from the rec-
ognized sentence in a first step, and then “corrects” these concepts based on the context in-
formation. The final hypotheses are extracted as the set of concepts that minimize the WLD. 
While the former approach uses the CFG, the latter uses a statistical N-gram language model. 
In order to achieve a good performance, these two approaches require high quality context 
information since they use the latter as a ground truth search space. The context error rate of 
the Hypotheses Generator is below 0.9% [2], i.e., only each hundredth command given by the 
controller was not expected. 

3.3 Command Extraction 

In order to effectively integrate the ASR output into the assistance system, an additional in-
formation extraction step is needed to extract the relevant ATC information. This task was 
successfully achieved by embedding XML-tags in the grammar itself. These tags are mapped 
to empty acoustic states and, therefore, can be integrated into an ASR system without affect-
ing its performance. When the N-gram language model is used, however, the sequence label-
ling task was either achieved by transducing the raw ASR hypotheses using the WFST from 
the CFG or using a sequence tagger such as Conditional Random Fields (CRF). For instance, 
in this additional command extraction step, the ASR hypothesis “air berlin three two bravo 

good morning turn left heading one two zero degrees” is mapped to “<callsign> air berlin 

three two bravo </callsign> good morning <command=turn_heading> turn <direction> left 

</direction> heading <degree> one two zero </degree> degrees </command>”. This com-
mand is subsequently returned to the assistance system as “BER32B TURN_LEFT_HEADING 

120”. The number of commands a controller gives in one single utterance to the pilot is not 
limited. Three to four often occur in high workload situations. The utterance “austrian one two 
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two alpha continue right turn heading three one zero descend three thousand feet cleared ils approach 

runway three four” results in the commands “AUA122A TURN_RIGHT_HEADING 310”, 
“AUA122A DESCEND 3000” and “AUA122A CLEARED_ILS 34”. The output of the “Command 
Extractor” is checked again by the “Plausibility Checker” in Figure 1 whether the recognized 
commands are reasonable in the current situation, e.g., do not produce conflicts. The 
“Command Monitor” analyzes the future behavior of the aircraft (radar data), whether they 
are in line with the “Command Extractor’s” output. 

3.4 Plausibility Values 

ASR decoders can generally produce confidence scores, which reflect the certainty of the 
recognition for each word in the produced hypothesis. These scores are formalized as proba-
bilities. In our research, the ASR system is based on the KALDI toolkit [13], and the ASR 
confidence scores were generated based on the Minimum Bayesian Risk (MBR) decoding 
approach [15]. In order to estimate the plausibility value for each ATC concept, the ASR con-
fidence scores of the words that were tagged with the same label (of the corresponding ATC 
concept) were combined to form a concept-level confidence score.  

4 Experiment Setup 

The main purpose of the AcListant®-Strips project was to quantify the benefits of ABSR in 
ATC with respect to efficiency and controllers’ workload. Air traffic controllers normally 
manage all aircraft information with flight strips. These strips contain static information about 
each flight such as call sign, weight category, destination, and route. Additionally, all clear-
ances regarding altitude, speed, and course (heading or waypoints) are noted by the controller. 
Historically paper flight strips, maintained by pencil or ball pen, were in operation, but mod-
ern controller working positions use electronic flight strips or electronic aircraft labels. How-
ever, independent from this type, considerable controller effort is needed to manually main-
tain strip information consistent with commands given to the aircraft.  

We evaluated two possible methods to insert given controller commands into the radar 
labels. The “manual” way is to completely use the mouse. The second input method is sup-
ported by an ABSR system. The controller may confirm or reject the output of the speech 
recognizer. In the latter case or if ABSR creates no output manual interaction of the controller 
is still necessary. Eight controllers from Germany and Austro Control (all native German 
speakers) participated in the trials. Two were female and six were male. They were between 
22 and 53 years old (mean 36). They worked between 1 and 32 years as an active controller 
(mean 14 years). The participants neither were used to train the acoustic nor incorporated in 
the language model. 

4.1 Compared Input Modalities 

We evaluated two possible modalities to insert given controller commands into aircraft radar 
labels. The “manual” way is to use the mouse. By left clicking on one of the five interactive 
grey label cells (see left and middle part in Figure 2) a drop-down menu opens. The controller 
has to select the intended value (see right part in Figure 2), which are displayed in yellow af-
terwards. After completing the input of all necessary values for the respective aircraft, the 
controller has to confirm all these values by clicking on the green check mark (see middle part 
of Figure 2).  

The second input modality is supported by ABSR, described in the previous sections. The 
voice channel between controller and pilot is analyzed by ABSR. The recognized commands, 
not the word sequences, are then visualized in yellow, i.e., they are still unconfirmed, in the 
corresponding five interactive cells shown in Figure 2. If the speech recognizer fails to cor-
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rectly recognize the given command(s), the task of the controller was to manually input or 
correct the command as described above. 

   

Figure 2 - Controller display for interaction with speech recognizer. Left: 5 interactive cells without 
contents; middle: speech recognizer output in yellow: right: drop down menu 

4.2 Aircraft Scenarios 

We used two different approach scenarios, i.e., aircraft sequences, of the Düsseldorf approach 
area. In the first scenario the controller is responsible for an area, which is normally controlled 
by two controllers, which are called the pickup and the feeder controller. Therefore, we call it 
the combined pickup/feeder (PF) scenario. On the other hand the controller only was respon-
sible for the arrival traffic. The traffic demand was medium with approximately 35 arrivals 
per hour, see Figure 3). It lasts 60 minutes with a 5 minutes runway closure after 15 minutes 
and an emergency flight in the middle.  

 

Figure 3 -  Responsibility area of pickup/feeder scenario. On the right we see the planned sequence of 
the AMAN, in pink we see the planned runway closure 

In the second scenario the controller only acts as feeder controller, but this time with very 
high traffic demand (60 arrivals per hour). The polygon in red in Figure 3 shows the responsi-
ble area of the feeder controller. The scenario lasts 45 minutes. 60 arrivals per hour on one 
runway are of course impossible due to minimum separation constraints. Holdings or long 
path stretchings are necessary to safely handle this amount of traffic. Controllers were asked 
to give feedback during pre-trials (performed in July and September 2015) when traffic de-
mand would be too high. A simulated pickup controller would then automatically reduce the 
flow by deleting the next arrivals before they enter the control area of the controller. The con-
troller, however, often forgot that feedback. In real life a deleting of aircraft is also not possi-
ble. Therefore, in the main trials, we automatically deleted the next two arrivals, if the final 
gets longer than 22 nautical miles (40.7 km). This eases also comparison of results. 
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5 Results 

We calculate for each aircraft (except the first three landings) the difference between its flight 
time (from entering into scenario until touch down) and its earliest possible time predicted by 
AMAN 4D-CARMA. We exclude the first three aircraft because the beginning is always the 
“learning phase” of the controller. Table 1 lists the measurements of the average flight times. 

Table 1 - Additional flight time in seconds 

 
Controller 

Pickup / Feeder Feeder 
ABSR+Mouse Mouse ABSR+Mouse Mouse 

A 121.6 190.1 285.1 266.6 
B 111.1  163.6 375.0 401.6 
C 187.8  215.4 286.6 291.3 
D 147.9  150.7 316.8 344.8 
E 305.3 271.9 437.6 347.4 
F 208.6 529.1 376.2 340.3 
G 141.8 345.3 250.7 360.2 
H 178.0 156.4 250.4 364.7 

Table 2 shows the corresponding mean, median and standard deviation of flight times. A 
paired t-tests falsifies the zero hypothesis, that mouse input modality is better than mouse plus 
speech recognition modality with an α (p-value) of 3.6%.  

Table 2 - Results for average additional flight time, standard deviation and mean in seconds 

Scenario Input modality Mean Sigma = SD Median 
Pickup/Feeder Mouse only 253 122 203 
Pickup/Feeder ABSR+Mouse 175 58 163 
Feeder Mouse only 340 40 346 
Feeder ABSR+Mouse 322 63 302 

In the same way we calculated the average flown distance, the number of aircraft landed 
per hour and the number of given commands by voice to the pilots which were not entered 
correctly into the aircraft label. These were either forgotten to enter (often due to high work-
load) or they were wrongly entered and not corrected. All these measurements confirmed the 
hypotheses that ABSR support for radar label maintenance in contrast to mouse only input 
results in better air traffic management (ATM) efficiency.  

We also evaluated the influence of speech recognition on controller’s workload. In detail 
we present here the time the controller needs for radar label maintenance with ABSR and 
without. We measured the duration of the time interval when the controller left clicks with the 
mouse on one of the five interactive label cells (Figure 2) and until clicking on the green 
check mark (ACCEPT). This roughly represents the duration needed to perform the label 
maintenance with the mouse. With ABSR support in most cases no clicking was necessary. 
Instead we used the Keystroke-Level-Model (KLM) [16] which defines execution times for 
different types of human-computer interaction, e.g. press or release a button, move the mouse 
to a specific position on the screen, the mental process of thinking what to do next.  

Table 3 - Simulation time needed for command input in percentage 

Scenario Input modality Mean Sigma = SD Median 
Pickup/Feeder Mouse only 30.6% 12.3% 28.3% 
Pickup/Feeder ABSR+Mouse 11.0% 3.1% 11.6% 
Feeder Mouse only 27.4% 11.2% 25.0% 
Feeder ABSR+Mouse 9.5% 2.0% 9.3% 

We estimated the additional time compared to the “Mouse only” scenario with 1.2 sec-
onds for every command that was accepted without any correction. This time correlates with 
the duration needed for a single mental process thinking of what to do next. Table 3 clearly 
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shows that without ABSR the controller uses nearly 30 percent of his time just for clicking. 
With ABSR support we reduce the time the controller needs for label maintenance by a factor 
of 3. These results are confirmed by further measurements (NASA TLX, ISA = Instantons 
Self-Assessment, secondary task). More details are provided in [2] and [17]. 

In subsection 3.4 we introduced the plausibility values. A high plausibility threshold re-
sults in lower command error rates, but on the other hand we have to accept also a lower 
command recognition rate. Figure 4 shows the results if we change the plausibility value for 
the Munich controllers and the Vienna controllers. During the trials a plausibility value of 
40% was used. Controllers from Munich (different from participants in trials) were included 
in the language and acoustic models, but no controllers from Vienna were included in the 
models. Vienna controllers, e.g. use the word “Servus” also as greeting like “Bonjour” or 
“Good morning”. Munich controllers (and language model) use “Servus” only as “good bye”. 

 

Figure 4 - Inverse recognition and error rate versus plausibility threshold 

Concerning the error rate we observed no big difference between the German and the 
Austrian accent. If we look onto the (inverse) recognition rate, we, however, see a difference. 
The German accent or the German deviations from standard phraseology are modelled better 
in the ABSR system. There is room for improvements. We can choose any value between 0% 
and 40% for the plausibility value. It makes no significant difference. The ABSR system is 
robust. Plausibility values between 40% and 60% result in a decrease of the error rate. Of 
course the recognition rate decreases also, i.e., rejection rate increases. Plausibility values 
above 60% or even 70% have no added value, because error rate decreases only slightly, but 
recognition decreases dramatically. 

6 Conclusions  

This paper concludes our work with respect to ABSR. In 2011 Saarland University and DLR 
started with student works. In 2015, we demonstrated that command error rates below 1.7% 
are possible. We showed that ABSR improves the adaptation speed of an AMAN. This paper 
shows that ABSR significantly reduces controller workload and increases ATC efficiency. 
For the Düsseldorf approach area (after Frankfurt and Munich the biggest airport in Germany) 
we quantified the benefits to 50 to 65 liters less kerosene consumption per flight. 
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