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Abstract: We investigated classification with Support Vector Machines for spoken 

language understanding with respect to their use in embedded devices, which are 

often equipped with slow CPUs, and main or persistent memory of limited size or 

with slow access times. We started with uni- and bigrams as features and managed to 

reduce the feature set in most cases by applying Recursive Feature Elimination from 

a few thousands to a few dozens. This corresponds to a reduction of the overall 

model size to 6% of the original size, without having a substantial loss in 

classification performance. The F score difference is 0.16%. 

1 Introduction 

In recent years, speech dialog systems (SDS) have become a natural component in embedded 

devices such as mobile phones, smart watches and cars. Elektrobit Automotive integrates SDS 

for major car manufacturers such as Audi, General Motors and others. In an increasing 

number of systems parts of the processing are done on a server, e.g. automatic speech 

recognition (ASR). Unfortunately, in many situations the mobile network is not available. 

Imagine, a driver uses underground parking and wants to issue a speech command to 

conveniently set up the navigation system before starting the trip or think about driving in a 

remote area with unreliable network connection. In addition to these technical limitations an 

increasing number of users are concerned about their privacy and feel uneasy when their 

speech commands are sent to a server and potentially collected there. All this shows that there 

is a demand for speech and dialog processing on device. Embedded software devices are 

usually characterized by slow CPUs with a small cache. They are often equipped with main or 

persistent memory of limited size or with slow access times. We describe how techniques for 

spoken language understanding (SLU) can be optimized with respect to small model size and 

fast processing time, while making minimal concessions to accuracy and reliability of the 

classifier. A good overview of recent developments in the field of SLU is given in [1]. We 

will briefly describe those developments that are relevant to our work. 

1.1 Grammar based models 

The classic SLU approach is grammar based word spotting, where the rules are written by 

experts [2][3]. This works well for small systems and ad hoc solutions. Rule based models are 

small and processing times are fast. But for complex systems which are deployed in many 

languages and have a huge number of rules, hand crafted systems come in less handy as for 

each language an expert linguist is necessary to handle the complicated task of writing and 

maintaining the grammar. 

1.2 Data driven models 

Data driven models have the advantage that they can be trained and maintained by machine 

learning experts independent of the language of the data. However, for annotation and 

maintenance of the training data native speakers of the respective language are necessary. If 

the annotation is kept plain and simple, basic linguistic skills are sufficient. This is the case 

for an annotation which consists of semantic concepts that are annotated per utterance [4]. 
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Generative approaches based on Hidden Markov models or other approaches that utilize a 

hidden structure can align semantic concepts with a given word sequence [4][5][6][7][8][9]. 

Such an alignment is usually not necessary in a practical SDS, although it may be useful in 

the process of creating, correcting and maintaining the annotation of training and test corpora. 

Discriminative approaches create a feature vector from the utterance and classify it into a 

semantic category using standard classifiers such as conditional random fields [10][11] or 

support vector machines (SVM) [12][13][14][15]. A straight forward approach uses a multi-

class SVM for dialog act classification and binary SVM for concept-value pair recognition. 

All results are combined to a semantic tuple classifier. The feature set contains word level 

unigrams, bigrams and trigrams [16]. Other approaches used linguistic features like parts of 

speech (POS) [17] or different kinds of kernels, like convolution [18] or string kernels [19]. 

2 Data for training and testing 

We used a corpus that is specially annotated for spoken language understanding. It is 

described in [20] along with very good results using SVM. The corpus is available in the 

internet and contains 10571 transcribed utterances of human-machine conversations of a 

restaurant information system in English. The following annotations are provided [20]:  

• Orthographic transcription 

• Semantic annotation: dialog acts (e.g. inform), concept-value pairs (e.g. area=north) 

• A list of the 10 best hypotheses generated by a speech recognizer (WER: 37%) 

• Dialog act of previous system utterance 

We cleaned up the orthographic transcriptions of both training and test set i.e., normalized 

spelling variants, corrected typing errors and normalized all characters with respect to case, 

resulting in training set vocabularies of 577 and 336 words for transcriptions and hypotheses 

respectively. In order to get an idea on how the performance of our SLU system depends on 

the word error rate (WER) of the used recognizer, we tested our models on the transcriptions 

(WER=0%) and on the best hypothesis of a recognition result as provided in the corpus 

(WER=37%).  

3 Experimental setup 

Speech recognizers usually provide the concept of grammar slots [21]. These are placeholders 

in an ASR-grammar which can be filled with lists of entries. We only treated semantic 

concepts Food and Name as ASR-grammar slots. In most recognizers the slot information is 

noted in the recognition result. We simulated this by collecting all instances of names and 

food types in the training set. We replaced all instances of this collection in both test and 

training set by the respective slot name. This means, that variants of instances that only occur 

in the test set could not be replaced. The second and third occurrences of the same slot type in 

one utterance are marked differently. The sentence “i would like indian or italian food” would 

be converted to something like “i would like FOOD-1 or FOOD-2 food”. This simple 

transformation allows us to add new values without re-training the classifier. But it would also 

convert an “italian sports car” into a Food type, so we just use it for pre-processing.  

We grouped the annotations such that we could train twelve different classifiers: DA (17 

Dialog Acts), Food (6 classes), Name (4 classes), Address (3), Area (9), Phone (3), Postcode 

(3), Pricerange (8), Signature (2), Task (2), Type (2), and finally Don’t-care (2). Exactly one 

of the 17 dialog acts is assigned to each utterance. All other classifiers are named according to 

the concept that they handle and have a class for each value that is possible with this concept. 

They also have a not-present class that was annotated when a certain concept was not in the 
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semantic annotation. An utterance which is annotated as inform(food=italian, area=south) 

would fall into the category not-present for the classifiers of Name, Address, Phone, 

Pricerange, Postcode, Signature, Task, Type, and Don’t care. For all our experiments we used 

WEKA [22] as our test and training environment. As WEKA’s built-in SVM implementation 

turned out to be a bit slow, we used LibSVM [23] via WEKA for training and testing where 

possible. For our classification results we used dialog act accuracy and F-score as described in 

[20]. F’ is defined as the harmonic mean of precision and recall of the dialog act and all 

concept-value pairs of an utterance. F is calculated as the arithmetic mean over F’ of all 

utterances in the test set. For this calculation we used the values as predicted by the 

classifiers. We did not attempt to correct the result in order to be compliant to the syntax of 

the semantic annotation, which has constraints on what concepts can co-occur with certain 

dialog acts. Annotations such as inform(area) or request(area=east) are not allowed by the 

syntax [20], but could occur in our classification results. Finally we are just interested in word 

based features, so we do not use knowledge about the previous system dialog act in our 

experiments. 

4 Baseline system 

We started with models that use a combination of uni- and bigrams as features, similar to [16] 

and [20], where uni-, bi- and trigrams were used. A feature is set to 1 if the word or bigram 

that corresponds to it is used in the sentence otherwise the feature remains 0. This leads to 

huge, but sparse vectors, which allow efficient calculations. We used linear kernel and 

optimized the parameters with grid search. 

4.1 Reducing the imbalance of classes 

A particular problem of our class design is that the not-present class is usually much bigger 

than the others. This may cause a classifier to be biased such that it assigns a data point more 

often to the not-present class just because it is so frequent. We tried to reduce the not-present 

class in the training sets. Table 1 shows results for models that use unigrams and bigrams as 

features. The models are trained on the complete data set and on a reduced data set, where we 

removed all sentences that are annotated with the request dialog act from the training data for 

the not-present classes of all concept classifiers. 
 

Uni + bigram Features Test DA Acc. F ± 1.96 � (%) Size (kB) 

complete  

trans. 
4161 

trans. 96.54 86.46 ± 0.5 
14917 

1-best 71.94 64.78 ± 1.1 

complete  

1-best 
4050 

trans. 82.89 86.35 ± 0.9 
16048 

1-best 78.20 77.43 ± 1.0 

reduced  

trans. 
4161 

trans. -- 95.72 ± 0.4 
13619 

1-best -- 73.73 ± 1.2 

reduced  

1-best 
4050 

trans. -- 84.89 ± 0.9 
15714 

1-best -- 76.15 ± 1.0 

Table 1 - Dialog act accuracy (Acc.) and F-score for classification on the transcriptions and the best 

hypothesis (1-best) of the test set. Classifiers are trained on both uni- and bigrams of the transcriptions 

(trans) and the best hypothesis (1-best) of the complete and reduced training data. 

The models that were trained on the reduced transcriptions outperformed the models which 

were trained on the complete transcriptions, by roughly 10% absolute, when comparing F for 

both transcriptions and best ASR hypotheses. For the models trained on the hypotheses of the 
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ASR result (1-best) reducing the training data did not work at all. This means that training 

data reduction in order to improve the classifier must be done for each data type separately, if 

it works at all. For dialog act classification it does not make sense to remove the requests 

from the training data, as the requests are to be predicted by the model. F considers the dialog 

act and all concepts. In all further experiments we used the reduced data for concept 

classifiers trained on transcriptions. 

4.2 Limited benefit with bigram features 

For this experiment, we trained two new model sets, one on the reduced transcriptions and the 

other on the complete set of best hypothesis of the recognition results of the training set. For 

both we used just unigrams as features. When moving from uni- and bigrams (Table 1) to just 

unigrams (Table 2), the feature space shrinks by a factor of 7 and 12 respectively. This causes 

a decrease in the model sizes by a factor of 5. For the models trained on orthographic 

transcriptions, the results on the expert user task showed only very limited loss. We observed 

the biggest degradation for the dialog act classifier with 0.27% absolute. The F difference is 

mainly caused by the dialog acts. For the concept-value pair classifiers the results decreased 

marginally, in two cases they even improve. The results for the ASR hypotheses are similar, 

just a bit lower. For the models trained on the best hypotheses, we observed considerable 

improvements everywhere apart from the dialog tested on ASR hypotheses. In summary, it 

seems that unigrams already contain a lot of information. Adding bigrams yields only small 

gain. 

Unigram Features Test DA Acc. F ± 1.96 � (%) Size (kB) 

 reduced  

trans. 
577 

trans. 96.27 95.45 ± 0.4 
2791 

1-best 71.49 73.35 ± 1.2 

complete  

1-best 
336 

trans. 85.62 88.45 ± 0.8 
3954 

1-best 77.98 77.43 ± 1.0 

Table 2 - Dialog act accuracy (Acc.) and F-score of the classification results tested on the 

transcriptions and the best hypotheses of the test set. Classifiers are trained on just unigrams of the 

transcriptions and the best hypothesis (1-best) of the training data. 

5 Feature reduction 

5.1 Drawbacks of LDA and PCA 

Obvious candidates would be Principal Component Analysis (PCA) [24] and Linear 

Discriminant Analysis (LDA) [25]. These learn a mapping from the original feature space to a 

new feature space in which the features are ordered according to their importance. This 

ordering could be used to reduce the new feature space but the original feature space would 

remain the same and the mapping would be an extra resource that must be stored on the 

device or held in memory in addition to the SVM models. Furthermore the software on the 

device would then consist of the feature space mapping algorithm and the SVM decoder. As 

the new features are likely not to be sparse integer vectors anymore, we expect to get 

rounding errors and higher computational effort. These concerns made us search for 

alternative solutions.  

5.2 The SVM RFE algorithm 

The literature about Recursive Feature Elimination with SVM (SVM RFE) [26] reported 

impressive results on selecting genes responsible for cancer from gene sets of healthy and 
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cancerous tissue. Furthermore this method does not have the above mentioned drawbacks. 

Features are directly removed from the original feature space. The algorithm is tailored to 

SVM. No additional mapping algorithms are necessary on the device, only the training gets 

more time consuming, which is acceptable. The SVM RFE algorithm uses an SVM to create a 

list of all features ranked by their importance for the classification task. In the following, we 

shortly explain the SVM RFE algorithm for a binary classification task as it is described in 

[26] and implemented in WEKA: 

1. An SVM with a linear kernel is trained on the entire training data. The result is a 

weight vector w, which is perpendicular to the decision hyperplane. Each component 

wi of this vector corresponds to one dimension of the feature space. The value of wi
2
 

indicates the importance of the corresponding feature for the classification. 

2. All wi
2
 are calculated for the current feature set. 

3. The feature that corresponds to the lowest wi
2
 is dropped from the original feature set 

and would be entered on top position of the current ranked list. 

4. The SVM is trained with the remaining feature set.  

5. If (size of feature set > 1) then go to 2. 

The ranked list contains all features. The top ranked entry is the most important feature as it is 

the last that was added to the list and the bottom ranked feature is the least important as it is 

the first that was added 

5.3 Feature selection for concepts 

As it turns out, the number of features and the size of our training data are quite challenging 

for the implementation of SVM RFE in WEKA, which we used in our experiments. We 

therefore decided to start the feature selection with 577 unigram features and trained the 

models on the reduced transcriptions of the training set. As an example we show the results 

for the area classifier, that has nine classes:  

area=centre, area=south, area=west, area=east, area=north, area�east, area=dontcare 

area (requested) and area-not-present (not annotated with any of the area values) 

The selection algorithm returned these top ranked features: riverside, south, west, east, north, 

anywhere, near, southern, recorded, centre, any, northern, right, peats, you, note, in, central, 

path, care, part, after, i, stuff, eastern, area, moderately, the, love, or, recommend, priced,…  

Many of these features make perfect sense. Those that seem unrelated to area may be useful 

to distinguish the area-not-present class from all others. Starting with the top 5 features, we 

successively selected more features from the ranked list, built models for each new feature set 

on the training data and tested on the test data. Figure 1 shows accuracy plots for some of the 

concept classifiers (trained and tested on transcriptions). The classifiers for Pricerange show a 

behavior as we expected it: The accuracy increases with a growing number of features. We 

observe a steep increase for small feature sets. For large feature sets the accuracy saturates, 

reaching the best value for the full unigram set, that has 577 features. All other classifiers 

reach their optimum with considerably smaller feature sets. The classifiers for Phone, 

Signature, and Postcode reach the best accuracy already with 5 features which seems 

plausible as they have just 2 or 3 classes. The classifiers for Address, Name, Area, Type, and 

Don’t Care (some are not displayed) reach the best accuracy with a feature set somewhere 

between 11 and 32 features. The Food classifier reaches the best accuracy with 57 features.  

We tested the same models on the best hypotheses of the recognition results. The accuracies 

are lower of course, but the general picture of the graphs is similar. Even 5 classifiers reach 
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the best accuracy already with 5 features. Just the Pricerange classifier reaches the accuracy 

maximum only with the full set of unigrams. 

 

Figure 1 - Concept classifiers trained on successively reduced feature sets. Trained and tested on 

transcriptions. 

 

Figure 2 - Dialog act classifier trained on successively reduced feature sets. Trained and tested on 

transcriptions. 

5.4 Feature selection for dialog acts 

For dialog acts we did feature selection on two feature sets. In the first experiment we used a 

set of 577 unigrams and applied the algorithm on the transcriptions of the complete training 
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set. The second experiment was conducted with a feature set of 4161 uni- and bigrams. The 

number of features combined with the size of the training set was too big to get processed in 

reasonable time. We therefore developed a faster algorithm: The training set was divided into 

5 parts. We prepared a ranking for each partial data set. To combine the resulting 5 rankings, 

we selected from each partial ranking the top R features, combined them to a common list and 

finally kept all features that occurred more than three times in the list (majority vote). Raising 

the value of R = 1, 2, 3, … allows selecting a successively increasing number of features.  

In two experiments, we trained models with different feature sets and tested them on both the 

transcriptions and the best hypothesis of the recognition result. The accuracies of these 

models are displayed in Figure 2. Obviously all models perform better on the transcriptions 

than on the recognition results. In both use cases the bigram model is considerably better for 

models with less than 32 features. Around that point the unigram models improve 

substantially and overtake the bigram models. For larger feature sets both model types 

saturate. With feature sets larger than the vocabulary size of 577, the bigram models can 

slightly improve over the best unigram with 230 (trans.) or 577 (1-best) Features. The best 26 

features of the uni- and bigram model are (</s> for sentence end): where-it, right, hello, 

thanks-</s>, no, zippier-</s>, bye, what-types, your-thank, hi, goodbye, is-just, yes, the, 

phone-phone, your-phone, post-codes, yeah, is-the, yes-i, what, the-place, your-list, thank-

</s>, else, what-price 

5.5 Best selection 

We selected the best concept-classifiers amongst those with 32 or fewer features and the uni- 

and bigram dialog act classifier with 200 features. This combined model uses 764kB and 

achieves F = 95.56 ± 0.48 when tested on transcriptions. 

6 Conclusions 

On the used corpus, adding bigrams to the feature space of concept-value pair SVM-

classifiers leads to only small gains. The results of the feature reduction experiments showed 

that 9 out of 11 concept classifiers reach their best performance with a feature set of 58 or 

fewer words (10% of vocabulary). Many of the other features seem to rather introduce noise 

than help with the classification. The SVM classifier copes well with these features, as the 

accuracy differences between the best model and the model trained with the full feature set 

are smaller than 0.2% for all except for the Area classifier. For the dialog acts we observe a 

different behavior. More features result in better models and bigrams bring a performance 

gain that gets smaller for large feature sets. We successfully reduced the SVM model size by a 

factor of 17 while maintaining good classification performance. Combining all results yields 

small and performant models for SLU which are well suited for embedded devices. 
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