
THE STATISTICS AND PHONE ERROR RATES OF BARK-FEATURES

Harald Höge 

Universität der Bundeswehr München 

harald.hoege@t-online.de 

Abstract: We simulate the process of feature processing as assumed to be done in the 

human brain. The simulation is based on the principle that the features are processed 

independently in critical bands. 30 critical bands are realized by a Gammatone filterbank. 

The output of each band is segmented into phones. From each segment and each band a 

‘modulation feature vector’ is extracted assuming that the spectrum of modulation is 

stationary during the duration of a phone. Using GMMs trained on those modulation 

features, a recognizer is constructed for each filter. The segments are classified1
 into 

phonemes leading to a phone error rate per band. Given the emission probabilities of the 

GMMs the probabilities for each phone and for each band are determined. In our approach 

these probabilities build the components of a ‘phone feature vector’, which is assumed to be 

processed in the auditory cortex. To the authors knowledge the transformation of the 

modulation features to phone features is unknown neuro-physically. Yet from perceptive 

experiments we know some statistic properties of the phone features concerning the relation 

between the human phone error rate per band and the human error rate of unfiltered phones 

[2]. To evaluate this relation we combine the 30 phone feature vectors and construct an ‘all-

band’ recognizer. Classification of segments of Spanish speech using 32 phones leads to an 

‘all band’ phone error rate of 48% and a phone error rate per band of about 92%. These error 

rates deviate significantly from human performance.  

1 Introduction

The features extracted for human phone perception are generated along the auditory pathway 

by several transformations [1]. The pathway is built up by three subsystems: the cochlea 

located in the inner ear, the inferior colliculus located in the brainstem, and the auditory 

cortex. On this pathway the information given by the vibration of the basilar membrane 

undergoes several complex transformations. The first transformation is performed by the 

inner hair cells sampling the vibrations of the basilar membrane [3]. The function of each hair 

cell can be described by a band-limited filter, where the output of each filter is rectified and 

smoothed. The resulting information of the hair cells can be interpreted as a kind of short term 

spectrum y(F,t) - the auditory signal. For each ear the auditory signal is transported via the 

cochlea nerves to its cochlea nucleus. At this stage bundles of nerves are evolving, where each 

bundle transports the information provided by the vibration of about 1 mm along the basilar 

membrane [1]. Perceptive experiments reflect the processing in bundles and leads to the 

definition of the Barks scale [9]. We call this information stemming from those ‘1 Bark 

bundles ’Bark feature vector (BFk). This information is related perceptively also to a band 

of frequencies, which is called a critical band [9]. In the following we take also this naming 

instead of Bark. The human brain processes 35 BFs (k=1,…,35 Bark), where about 30 BFs 

contain information for phone perception. The components of the BFs are outputs of bundles 

of specific neurons organized in lamina. The information contained in the Bark feature vector 

changes during the pathway, but this information stems always from the bundle of hair cells 

sensing the vibration of the basilar membrane in the range of 1 mm. This kind of processing is 

common to all mammals. In the cochlea the components of BFk is given by samples of the 

auditory signal y(Fi,t), where the sampled frequencies Fi belong to a critical band. The first 

transformation is done in the olive complex containing spatial information, which is neglected 

in the paper. The next transformation of the BFs is performed in the central inferior colliculus. 

                                                
1

Classification is defined, when the boundaries of the segments are known.
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Here neurons are tuned to specific frequencies of amplitude/frequency modulation. We call 

the information contained in the BFs at this stage ‘modulation feature vectors’ (MFk). It 

should be emphasized that the MFs are not tuned to phone perception. The last transformation 

of the Bark feature vectors occur in the auditory cortex. We call the information contained in 

the BFs at this last stage ‘phone feature vectors’ (PFk) [2]. The neurons providing the 

components of the phone feature vectors are tuned in the age of less than 1 year of a child to 

the phones of its language [12]. In this age the speed of learning is very fast. With increasing 

age the speed of learning decreases rapidly. To the author’s knowledge the transformation of 

the modulation feature vectors to the phone feature vector is not known. As shown in Figure 1 

we speculate that each phone feature vector is used in the secondary auditory cortex to 

perceive phones bandlimited to the corresponding critical band (band perception). We define 

phone error rates ek k=1,…,K measured for each critical band. To perceive phones from all 

critical bands the phone feature vectors are combined (all bands perception).

Figure 1 – System Architecture of processing information originating of K bundles of hair cells. Each bundles 

sample the vibration of the basilar membrane in the range of 1 Bark

Fletcher [4] measured such error rates introducing the concept of articulation filters. Their 

bandwidth is constructed in such a way, that the phone error rates of phones building 

nonsense syllables are equal for all filters in unnoisy conditions. It turns out that the 

bandwidths of the articulatory filters are equal to the bandwidths of the critical bands except 

for very low and very high frequencies. According to the investigations of Fletcher and 

Steward [4] there exist an interesting relation between the human phone error rates ek (PER-

band) and the phone error rate � (PER-all-bands) of unfiltered speech (summing up the 

outputs of all K bands): � = ∏ ��  ����               (1)  

This relation must origin from specific statistic property of the phone features, which are 

unknown. 

Our long term goal is to build recognizers for each band and a recognizer for all bands with 

following properties: 

1. The phone error rates should obey the relation (1) 

2. The phone error rates �� should be equal  

3. The minimal phone error rate � should be less than 10% 
2

                                                
2

In his experiments Fletcher found a minimal phone error rate of 1.5%. Our investigations are done with 

conversational speech. For this experimental setting we assume higher minimal human phone error rates. The 

lowest phone error rate achieved on the TIMIT data base is 15.7% [13].
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To investigate, if these properties hold also for the simulated feature, we use as frameworks 

the architecture shown in figure 1. The focus of the paper is to develop this frame work. The 

building blocks of the architecture are crude models for the modulation vector and the phone 

feature vector. The models have to be tuned in future work. The paper is organized as follows: 

The auditory signal is generated by a Gammatone filterbank of 30 filters. The filterbank and 

the construction of the modulation-feature vectors are described in chapter 2. Chapter 3 

describes the construction of the phone features and the recognizers. Results on the phone 

error rates ek and � are presented in chapter 4. 

2 Modulation Features 

The modulation features are generated in 2 steps. First the speech signal is filtered by a 

Gammatone filterbank, which is approximated as described in [7]. The filterbank is described 

in section 2.1. Section 2.2 describes the construction of the modulation feature vectors MFk.

2.1 The Gammatone Filterbank 

A Gammatone filter is a specific bandpass which is defined by the center frequency �� and 

the 3 dB bandwidth 	
. For constructing a Gammatone filterbank, the center frequencies and 

the bandwidths are chosen based on psychoacoustic measurement [8]. The complex impulse 

response ℎ� of a Gammatone filter of order 
 is given by 

ℎ�(�) = ���� ∙ ��; � =  ����
� denotes the bandwidth parameter; � denotes the oscillation frequency. The z-transform of 

the impulse response for a first order Gammatone filter is given by ℎ�(�) = �
������ ; � = ����

which leads to an analytic signal given by the operation �� = ����� + ��. Following [7] the 

z-transform of a Gammatone filter of any order is approximated by

��(�) = ℎ��(�) = �
(������)� ; � = ���� The corresponding filter operations can be done by 

cascading the first order filter. The value of � is defined by the center frequency �� and the 

sampling frequency 	!: � = 2" Ϝ$%&
For a 3 dB bandwidth 	
 the damping factor � is given by

� = −'*�,'*- ��; . = �/0/1 3456/7 89*8&:
��1 ; < = 10� @-A (2)

The center frequencies �� of the Gammatone filterbank are equally spaced on the ERB scale. 

The ERB scale is related to the frequency by the relation  

BCD�EF(	) = 24,7 + %
J [BCD]; 	 = 24.7 L M�NOPQ − 1R ; L = 9.265 (3)

For a given value ERB the damping factor � and the 3dB bandwidth 	
 is given by [7]

 � = �� *V NOPW�8&  ;  �� = 7(/��/)!/�(*��*)
(���)!* 	
 = Y��� BCD; Z� = 2,2�� − 1 (4)

2.2 Modulation Features 

The filters Fk, k=1,…,K with center frequencies �� deliver the analytic signals ��(\, Ω�),

k=1,…K. These signals can be represented by [6, pp.369] 

��(\, ��) = |��(\, ��)|�_`(a,b$) ≡ �(\, ��) + de(\, ��)
|��(\, �)| = |�/(\, ��) + e/(\, ��)|�*;  f(\, ��) = \���� 
(a,b$)

�(a,b$)
g        (5) 
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The real part of ��(\, ��) can be regarded as an amplitude modulated cosine wave (see 

example in figure 3) with modulated phase around 2"��\: ��(\, ��) = |��(\, ��)|Zhi[2"��\ + j(\, ��)]; 
We define ḟ ≡ F

Fa f = 2"�� + j̇(\, ��) as the instantaneous frequency and j̇ as the 

instantaneous frequency deviation. The phase f can be recovered by 

f(\, ��) = ∫ ḟam (\, ��)n\ +  f(0, ��)
The instantaneous frequency deviation j̇ is given by [6, p.370] 

j̇(\, ��) = 
(a,b$)�̇(a,b$)��(a,b$)
̇(a,b$)
�*(a,b$)0
*(a,b$)         (6) 

The signals ��(\, ��) o = 1, … , p are cut into segments with starting time \� and end time \/
representing the signal of a phone. The timeslot [\�, \/] is given by the alignment labels of the 

speech databases. Given [\�, \/] of a segment, the AM-spectrum qr�(\�, \/) derived from the 

amplitude modulation |��(\, �)| and the FM-spectrum �r�(\�, \/) derived from the 

instantaneous frequency deviation j̇(\, ��) is given by their Fourier transform: 

qr�(�) = s∫ |��(\, ��)|�_ban\a*a� s ; �r�(Ω) = s∫ j̇(\, ��)�_ban\a*a� s    (7) 

The functions qr�(�) and �r�(�) are sampled building the components of the modulation-

feature vector BFk (see chapter 4). 

3 Phone Features

For classification we use GMMs trained for each band. For each phone tℎ_ the emission 

probabilities .ur��vtℎ_w are approximated by GMMs with tied covariance matrices  Zhx�
.ur��vtℎ_w ≈ ∑ Z{}(~���_�{��,${�� , Zhx�) (8)

We define phone error rates ek, provided by the classifier based on Bayes decision rule  

tℎ� � = ���~�����.ur��vtℎ_wt(tℎ_) (9)

This classifier uses a mono-phone language model t(tℎ_). To determine the error rate e of 

the unfiltered speech signal we use 2 approaches. The first approach assumes that the 

modulation features r�� are statistic independent for the different bands. This assumption 

leads to the emission probability .ur�������⃗ vtℎ_w ≡ ∏ .ur��vtℎ_w���� and a related classifier:

tℎ� = ���~�����.ur�������⃗ vtℎ_w t(tℎ_), (10)

This classifier delivers an all-band phone error rates denoted as e
I
. The second approach is in 

the spirit of the architecture shown in figure 1. Phone-features are derived from .ur��vtℎ_w.

The components of the phone feature vector t�� are defined by 

t��(d) = − log tutℎ_vr��w ; d = 1, … , �tℎ
         = −�h� �u�b$v���w

�(�b$) tutℎ_w; .(r��) = ∑ .ur��vtℎ_wtutℎ_w���_�� (11)

Following (8) and (9) but using the features (11) a all band classifier is constructed. The 

resulting all-band phone error rates are denoted as e. In addition we define an all-band phone 

error rate e
�

, which is derived from (1), where the error rates are ek are given from the band-

classifier (9). The difference between e� and e show the deviation to human perception. 

4 Experiments

Our experiments are performed with Spanish speech databases covering broadcast news, 

conversations and podcast downloaded from various internet sources. The databases were 
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developed during the QUAERO project and used during for ASR evaluation [11]. The 

labeling into phone segments was performed by the HMM training system [10] using 3 or 6 

state right to left HMMs based on tri-phones. The phones are defined by the acoustic 

realization of 32 phonemes including the ‘non-speech-segment’ /si/. The speech signal x(t) is 

sampled with16kHz providing the samples �(�).

4.1 Gammatone Filterbank 

The Gammatone filterbank is constructed as described in 2.1. We use a Gammatone filterbank 

of 30 filters [7] as specified according to table 1.  

        filter spec in [Hz]            center frequencies  [Hz} 

sampling rate 16 000 73.2 348.4 874.3 1879.2 3799.4 

lower frequency 70 107.7 414.2 1000.0 2119.4 4258.5 

base frequency 1000 146.0 487.5 1140.1 2387.1 4770.0 

upper frequency 6700 188.7 569.1 1296.1 2685.2 5339.7 

236.3 660.1 1469.9 3017.3 5974.4 

289.4 761.4 1663.5 3387.3 6681.4 

Table 1 – Specification of the Gammatone filterbank with center frequencies Fk k=1,..,30

The real part of the impulse response and its spectrum of a filter is depicted in figure 2. 

Figure 2 – left: real part of impulse response of filter F14 with center frequency of 1000Hz 

right: spectrum of impulse response

4.2 Generation of Modulation Features  

To calculate the modulation features, equation (5) and (6) have to be evaluated. We regard 

samples ��(�, ��) � = 1, … , } of the filter outputs aligned to a time slot [\�, \/] of a phone 

(see section 2.2). The samples |��(�, ��)| deliver the envelopes of  ��(�, ��) (see figure 3).

For implementing (6) the instantaneous frequency deviation j̇ has to be provided. j̇ is 

approximated by first order differences ∆�(�) = �(� + 1) − �(�); ∆e(�) = e(� + 1) −e(�) leading to  

∆j(�, ��) = e(�, ��)∆�(�, ��) − �(�, ��)∆e(�, ��)�/(�, ��) + e/(�, ��)
The FFT of |��(�, Ω�)| and ∆j(�, ��) delivers samples of the features of qr�(~) and �r�(~) defined in (7). The samples qr�(~) are normalized by the energy of the segment 

by following rule: 

~���D��nqr = �
� ∑ |��(�, ��)|���� ;  ~���q��D��nqr = �

� ∑ |��(�, ��)|����
qr�(0) ← �������F��

����������F�� ; qr�(~) ← ��$(�)
�������F��  ; ~ = 1,2, …

We use an FFT of order 13 (8192 points). If the number of samples of a phone is smaller than 

8192 (corresponds to 510ms) the samples are zero-padded (usual case). Otherwise the signal 

is cut to 8192 samples (happens often in silence segments). For the sound plotted in figure 3 

the modulation spectra are shown in figure 4. The energy of the spectra is concentrated at low 
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frequencies. In this way each phone is represented by a modulation feature vectors r��;

k=1,…,30 with dimension n�~�� + n�~b� given in tables 1 and 2: r�� = [qr�, �r�];  qr�(~), ~ = 1, … , n�~��; �r�(~), ~ = 1, … , n�~b�.

Figure 3 – above: original signal of the sound labeled as /a/ with a duration of 1000 points (62,5ms); 

                 left below: real part and the absolute value of the phone /a/ filtered by filter F14 (Ω�� = 1o��);

                 right below: instantaneous frequency deviation 

Figure 4 – modulation spectra; left: AM-spectrum in Hz; right: FM-spectrum in Hz. 

4.3 Classification 

From the speech databases sets of r�� for each phoneme and each band are generated. Given 

those sets, a LDA (linear discriminant analysis) is generated, which transforms the feature 

vectors to lower dimension. Further these sets are used to train ‘MF-GMMs’. According to (8) 

the covariance matrices of each band are tied. The classifier (9) delivers the error rates ek. The 

all band error rate of the combined filters is determined for the two cases described by (10) 

and (11). Equation (11) leads to high dimensional phone feature vectors of dimension  30 ∙ (n�~�� + n�~b�). Their dimensionality is decreased by applying an LDA. From these 

vectors we train ‘PF-GMMs’, which are used for classification.

4.4 Results 

The size of speech databases used for training and testing is given by their number of phones: 

test training 

288 028 1 499 809 

To answer the question, if the sizes of the databases are sufficient to achieve relevant results, 

the GMMs and LDAs were trained on the test databases as well as on the training databases. 

Performing classification on the test database we compared the two phone error rates from the 

different GMMs and LDAs. We found, that the difference in phone error rates for the 2 cases 

is about 1% absolutely. Due to the high error rates observed, the magnitude of these 

deviations can be neglected. Thus the amount of data available are sufficient
3
.

                                                
3

Overfitting could happen by the use of the PF-LDA with the high dimension of 960 x 960
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Preliminary experiments were done to investigate the discriminative power of the AMk and 

FMk features. As shown in table 2 the discriminative power of the AM-features is higher than 

those of the FM-features. For this experiment training and test was done on the test databases. 

For the definition of the phone error rate e
I
see chapter 3. 

dimAM dimFM dimMF e
I
 

50 0 20 65,4 

0 50 20 82,0 

Table 2 – phone error rates in %; dimAM (dimFM) = number of points of amplitude (frequency) modulation 

spectrum (see figure 4); dimMF=dimension of modulation feature vector after LDA

In the following experiments the AMk and FMk features are concatenated building the 

modulation feature vector MFk. Training of the MF-GMMs and MF-LDAs are performed on 

the training databases. In table 3 the dimension of the feature vectors used is shown. 

dimAM dimFM dimMF dimPF 

50 50 30 32 

Table 3 – dimensions of vectors used; dimPF=dimension of the phone feature vector after LDA 

The classification results on the test databases are shown in table 4. The biggest change of 

improvement is achieved, when increasing the number of modes for modeling the distribution 

of the modulation features. Increasing the number of modes for the probability feature vector 

leads to far less improvements. 

MF-modes PF-modes e
I e

�
 e

32 32 64,2 18,8 66,7 

120 32 65,5 21,7 48,3 

120 128 65,5 21,7 47,2 

Table 4 – all band error rates; MF (PF)-modes= number of modes used for the modulation (phone) - GMMs; 

Table 5 shows the error rates ek for the experiment, where the lowest value of e is achieved. 

Band 1-5 6-10 11-15 16-20 21-25 26-30 

 

95 92 91 92 93 92 

94 92 91 92 93 92 

93 92 91 92 93 92 

92 91 91 92 93 92 

92 91 91 92 92 92 

Table 5 – ek in % for each band excluding the /si/-phone 

5 Conclusion

We have provided an architecture, which mimics the feature extraction along the auditory 

pathway. We use the concept of modulation features as processed in the central inferior 

colliculus
4
 and the concept of phone features as processed in the auditory cortex. Due to 

neuro-physical investigations the functionality of the modulation features is well explored. To 

the author’s knowledge this is not the case for the phone features. We assume that the phone 

features are related to the probability of the phones within each band. These probabilities are 

given by the emission probabilities of GMMs trained with the modulation features. In order to 

gain inside in the deviation to human perception, we use (1) and the fact that the human errors 

ek are equal for all k for unnoisy speech. Due to Fletcher investigations the human ‘all band 

error rate’ is 1.5% measured for nonsense syllables in absence of noise. Using 30 bands, 

humans would achieve for ek a value of about 87%. This value has to be compared with the 

                                                
4

A more elaborate cordical model can be found in [5]. The concept of the modulation vector is used also in [14].
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values for of ek in table 5, which are about 92%. Due to (1) this value has a big influence on 

the all-band error rate e. Thus the difference of 4% is this is quite a big gap. The error rates in 

table 5 are quite equal in the different bands as found by human perception. Comparing the 

values of e
I

and e in table 4, we see that the assumption of statistic independence of the 

features MFk is not correct as the phone features deliver lower error rates. Further the statistic 

properties of the MFk lead not to (1) as the error rates e and e
�

 are not equal. From these 

results we make 2 conclusions 

- We  have to find better modulation features to close the gap between the human ek of 

87% and the achieved ek of 92% 

- We have to find better phone features, which follow the product rule (in our case to 

close the gap between 22% and 47%.

The issue behind the first conclusion can be attacked by modeling the non-stationary character 

of modulation. The issue behind second conclusion is much harder, as to the author’s 

knowledge a suited theory combining the statistics of features properties to error rates is 

missing.
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