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Abstract: In this paper, we investigate whether the open-source speech recognizer

Sphinx can be tuned to outperform Google’s cloud-based speech recognition API

in a spoken dialog system task. According to this target domain, we use data from

CMU’s Let’s Go bus information system comprising 258k utterances of telephony

speech recorded in the bus information dialog system of Pittsburgh. By training a

domain-specific language model on the aforementioned corpus and tuning a num-

ber of Sphinx’s parameters, we achieve a WER of 51.2%. This result is significantly

lower than the one produced by Google’s speech recognition API whose language

model is built on millions of times more training data.

1 Introduction

Cloud computing has become one of the most popular topics in the IT world during the past

decade. One of the biggest benefits of a cloud-based service is the higher computational power

of servers compared to customer devices. Among other applications, speech recognizers can

greatly benefit from this advantage and are now available as cloud-based services offered by

several vendors.

Mobile devices like smartphones usually have less computation power than non-mobile ones

but are often equipped with wireless Internet connection. Since cloud computing shifts the re-

quirement of devices from powerful hardware to reliable network connectivity, it is particularly

appropriate to be used inside mobile applications. Further considering that user input on mobile

devices is rather inconvenient due to the lack of a full hardware keyboard, it becomes obvi-

ous that mobile devices like smartphones are a good platform for voice-controlled applications

utilizing cloud-based speech recognition.

Two of the biggest companies building voice-powered applications are Google and Microsoft.

In the years 2007 to 2009, they have been providing toll-free alternatives to 4-1-1, a costly

directory assistant by phone companies in the USA and Canada. These free services were

commonly known as GOOG-411 [1] and BING-411. However, due to the above mentioned

reasons, smartphones have proven to be better suited for voice search applications, and both

GOOG-411 and BING-411 were discontinued a few years after their launch. Instead, both

vendors are now focusing on providing mobile and voice-controlled versions of their search

engines Google and Bing for various smartphone operating systems. Data collected during the

operation of GOOG-411 and BING-411 served for bootstrapping acoustic and language models

deployed in the voice search engines.
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Although the recognizers of both companies are used by millions of users around the world,

they come with some major drawbacks regarding 3rd-party applications. First of all, to the best

of our knowledge, scientific evaluations on their performance are still outstanding. Secondly,

the cloud-based recognizers cannot be customized regarding the used models or the internal

parameters. Thirdly, no official APIs are provided to 3rd-party organizations to develop their

own voice-powered applications. Finally, they are proprietary software and not open-source.

In this paper, we answer the question whether it is possible to achieve similar or even better

performance with an open-source speech recognizer which is customizable and provides an API

usable by 3rd-party application developers.

2 State of the Art

Besides the above mentioned vendors Google and Microsoft, there are many other companies

developing speech recognizers. In this section, we present some of the most relevant commer-

cial and open-source state-of-the-art products and motivate why we have chosen to compare

Google’s speech recognition API and Sphinx.

2.1 Commercial recognizers

One of the most popular speech-powered applications is Apple’s personal assistant Siri [2].

First launched as a smartphone app, in October 2011, Siri was integrated as a key feature of

the iPhone 4S. Ever since, Siri has regularly appeared in the media as a killer app, including

New York Times and CNN. It is probably the most successful application combining speech

recognition with understanding of natural language, context, and reasoning.

Another widely known application featuring highly sophisticated natural language and speech

processing technology is the question answering system IBM Watson [3] famous for beating

the two ultimate champions in the quiz show Jeopardy. IBM has announced that Watson will

be made available as a customer service agent. The “Ask Watson” feature will be accessible

through different channels such as web chat, email, smartphone apps, and SMS. Furthermore,

speech recognition is to make Watson accessible by voice.

As a reaction to the succes of Apple’s Siri, in 2012, Google introduced the personal assistant

Google Now in Android 4.1 [4]. It focuses less on understanding natural language, context,

and reasoning but more on predicting search queries and preemptively showing results. Hence,

the biggest difference between Google Now and Siri is that the former is to proactively offer

information when appropriate. For example, in a train station, Google Now shows arrival and

departure times without user request. Besides Google Now on smartphones, Google has re-

leased a web-based speech recognition API. This Javascript library provides speech recognition

and synthesis functionality and is available starting in Chrome version 25. Google’s speech

recognition API allows developers to create voice-controlled Chrome add-ons and websites.

Another vendor of cloud-based as well as local speech recognizers is Nuance Communications.

Besides developing the popular speech-to-text desktop software Dragon NaturallySpeaking,

Nuance also offers a Siri alternative for Android and iOS called Vlingo Virtual Assistant [5].

Furthermore, recently, their CEO Paul Ricci disclosed that Nuance is powering the cloud-based

speech recognition behind Apple’s Siri [6].

2.2 Open-source speech recognizers

One of the most popular open-source speech recognizers is the Hidden Markov Model Toolkit

(HTK) [7]. Although it can be used to train any type of hidden Markov model (HMM), HTK

is primarily applied to speech recognition research. It consists of a set of libraries and tools
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written in C. The tools provide facilities for speech analysis, HMM training, testing and result

analysis. HTK can be used to build recognizers based on huge corpora including thousands of

hours of speech [8].

Another open-source toolkit is SRI’s Decipher [9]. It can recognize natural, continuous speech

without requiring the user to train the system in advance. It can be distinguished from other

speech recognizers by its detailed modeling of variations in pronunciation and its robustness

to background noise and channel distortion. These features let Decipher excel in recognizing

spontaneous speech of different dialects and makes recognition less dependent on the idiosyn-

crasies of different microphones and acoustic environments.

Kaldi is a free, open-source toolkit for speech recognition developed at Microsoft Research [10].

It provides a speech recognition system based on finite-state transducers together with detailed

documentation and scripts for building complete recognition systems. Kaldi is written in C++

and is released under the Apache License v2.0 which is intrinsically nonrestrictive, making it

suitable for a wide community of users.

MIT’s WAMI toolkit provides a framework for developing, deploying, and evaluating web-

accessible multimodal interfaces in which users interact using speech, mouse, pen, or touch [11].

The toolkit makes use of modern web-programming techniques, enabling the development of

browser-based applications which rival the quality of traditional native interfaces, yet are avail-

able on a wide array of Internet-connected devices. Additionally, it provides resources for

collecting, transcribing, and annotating data from multimodal user interactions.

Sphinx is the name of a group of speech recognition systems developed at Carnegie Mellon

University. Among these systems are Sphinx 3 [12], a decoder for speech recognition written

in C, Sphinx 4 [13], a modified recognizer written in Java, and Pocketsphinx [14], a lightweight

recognizer library written in C.

RWTH Automatic Speech Recognition (RASR) is written in C++ containing a speech recog-

nizer and tools for the development of acoustic models [15]. Speech recognition systems de-

veloped using this framework have shown high performance in multiple international research

projects and at regular evaluations, e.g. in the scope of the DARPA project GALE [16].

2.3 Experimental systems

Our aim is to show that open-source speech recognizers can be an alternative to cloud-based

commercial speech recognizers that are trained on humongous amounts of data. From the list

of available open-source speech recognizers provided in Section 2.2, we chose CMU’s Sphinx.

Main reason for this choice was the ultimate goal of this research to optimize recognition

performance in the scope of distributed industry-standard-compliant open-source dialog sys-

tems [17, 18, 19]. In addition to Sphinx’s support of the ARPA language model format [20] and

the Java Speech Grammar Format (JSGF), there exists also a Media Resource Control Protocol

(MRCP) port [21] which we are using within a complete VoiceXML and SIP-based spoken dia-

log system. The architecture of this system is depicted in Figure 1. Moreover, Sphinx’s license

is least restrictive and permits even commercial use of the code which makes it very appeal-

ing for industrial partners of the authors. For this paper’s experiments, we used Pocketsphinx

Version 0.8. Pocketshinx is still in an experimental state and under development.

We chose Google’s speech recognition API because it is the only industrial cloud-based speech

recognizer with a freely accessible API.
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Figure 1 - Architecture of a Distributed Industry-Standard-Compliant Open-Source Spoken Dialog Sys-

tem

3 Corpus

Our experiments are based on data collected within the Let’s Go bus information system in the

years 2008 and 2009 [22]. This spoken dialog system created at Carnegie Mellon University

provides bus schedule information to the Pittsburgh population during off-peak times.

The entire corpus consists of about 250k utterances which have been fully transcribed. We ran-

domly selected 3000 sentences as test and 3000 sentences as development data. The remaining

sentences were used to train a domain-specific language model.

To estimate the difficulty of the recognition task, we counted OOV words and computed

the 3-gram perplexity for each set. Utterances which could not be transcribed are tagged as

NON UNDERSTANDABLE in the corpus. For our experiments, we replaced the NON UN-

DERSTANDABLE tags by empty transcriptions. See Table 1 for detailed corpus statistics.

4 Experiments

As motivated in the introduction, the ultimate goal of our experiments was to find out whether

the open-source speech recognizer Sphinx is able to outperform Google’s speech recognition

API (the “baseline”).
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Table 1 - Let’s Go Bus Information System Corpus Statistics

Sentences 251 653

Words 466 695

Train Vocabulary Words 4 107

Singletons 1819

NON UNDERSTANDABLE 43 834

( 17% )

Sentences 3 000

Words 5 852

Development OOVs 25

Perplexity 126.57

NON UNDERSTANDABLE 502

( 16% )

Sentences 3 000

Words 5885

Test OOVs 16

Perplexity 131.19

NON UNDERSTANDABLE 489

( 16% )

As a first step, we determined the baseline performance on the test set. To this end, we con-

verted the raw audio files into the flac format supported by the Google speech recognition API

and achieved a word error rate (WER) of 54.6% (3211 errors out of 5885 words). Short ut-

terances (like yes or no) or times or bus numbers were recognized very well, but Google’s

speech recognition API struggled with grammatically wrong phrases and addresses. For exam-

ple, Google recognized

oakland knox avenue in homewood knoxville last bus

as

i cannot have another else like knoxville stuff.

����

����

����

����

����

����

����

����

	����


� 
� �� �� �� �� �� �� �� �� �� �� �� �� 	��

�

�
��
�
�

�����

Figure 2 - Results: Frate Optimization First Iteration
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Figure 3 - Results: Lw Optimization First Iteration
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Figure 4 - Results: Bestpathlw Optimization First Iteration

After establishing the baseline, we started experimentation with Sphinx using a set of default

models and settings. In all the following experiments, we used the Hub-4 acoustic model and

dictionary [23]. All tuning experiments were run exclusively on the development set to prevent

optimization on the test set. The Hub-4 language model resulted in a WER of 171% on the

development set. Also WSJ-5k and WSJ-20k language models produced WERs over 100%.

The reason was obviously that vocabulary and n-gram distributions did not match those of the

Let’s Go bus information system domain.

To overcome this issue, we created a domain-specific language model using the language model

toolkit CMUclmtk and the data of the training set (466k word tokens). This customized lan-

guage model improved the WER to 83.3%.

To further increase the performance of Sphinx, we now looked into optimizing recognizer

parameters. After running a number of informal tests, we chose to include the following pa-

rameters in formal experiments: frate, lw, bestpathlw, fwdflat, wip, pip, and uw. See Table 2 for

more information about these parameters.

Although the most rewarding way to optimize parameters would be to brute-force-test every

possible combination of parameter values, this approach would be too time consuming regard-

ing the wide range of the values. Therefore, we assumed independence of the parameters and,

hence, that parameters can be optimized individually. As this assumption is probably not en-

tirely valid, we decided to repeat the cycle of individual parameter optimization twice.

In the first iteration, we reduced the WER to 54.4% which is an improvement by 37.4% com-
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Figure 5 - Absolute WER Improvement First Iteration

Table 2 - Parameters Optimized During The Experiment

Name Default value Description

frate 100 Frame rate

lw 6.5 Language model probability

weigth

bestpathlw 9.5 Language model probability

weight for DAG best path search

fwdflatlw 8.5 Language model probability

weight for flat lexicon

decoding

wip 0.65 Word insertion penalty

pip 1 Phone insertion penalty

uw 1 Unigram weigth

pared to the custom language model with default parameter values. Figure 5 shows that the

main improvement was gained through optimizing frate, lw, and bestpathlw. Figures 2, 3, and 4

show how the WER depends on the values of these three parameters during the first optimization

cycle. While frate and lw exhibit clearly visible local optima, the local minima of bestpathlw

are not very obvious. Rather, it looks like that any sufficiently high value is acceptable meaning

that the language model score is overly important during the directed acyclic graph (DAG) best

path search.

In the second iteration, we were able to decrease the WER by another 2.8% which is relatively

small compared to the first iteration. Again, frate was the parameter with the highest impact

followed by lw, bestpathlw, and wip.

Since the WER improved only by 2.8% during the second iteration, we decided to stop tuning

parameters at this point. We believed it to be unlikely that further (slim) improvements would

populate to the test set but would rather overfit the development set.

In the last step, we applied the optimized parameter configuration to the test set achieving a

WER of 51.2% (3015 errors out of 5885 words). As aforementioned, Google’s speech recogni-

tion API achieved a WER of 54.6% (3211 errors out of 5885 words). With a p-value of 0.0003

as determined by a two-sample pooled t-test, this improvement is highly statistically significant.
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Table 3 - Parameter Optimization Results

WER Total error Parameter Value

default lm 171% 10007

custom lm 83.3% 4872

70% 4 095 frate 64

64.4% 3 769 lw 11

56.6% 3 309 bestpathlw 85

first iteration 55.6% 3 253 fwdflatlw 13

55.4% 3 244 wip 0.7

54.4% 3 184 pip 28

54.4% 3 184 uw 1

53.1% 3106 frate 78

52.6% 3078 lw 10

52.2% 3053 bestpathlw 390

second iteration 52.2% 3053 fwdflatlw 13

51.9% 3037 wip 0.07

51.9% 3037 pip 28

51.6% 3021 uw 2

5 Conclusion and future work

Using the Let’s Go bus information system corpus, we were able to show that the open-source

speech recognizer Sphinx is capable of outperforming Google’s speech recognition API. The

former achieved 51.2% WER on a test set comprising 3000 sentences. This result outperformed

Google by 3.3%, being highly statistically significant. The most effective parameters tuned

during Sphinx’s optimization cycles were frate, lw, and bestpathlw.

Even though improvements in the Let’s Go bus information system domain were significant,

the overall WER is still very high. One of the reasons is that we did not distinguish individual

contexts within the spoken dialog system when training the language model. For instance,

in a confirmation context, the user input (mainly yes or no) looks entirely different from a bus

destination collection context which is dominated by names of bus stops. We have shown in [24]

that dividing data into micro-contexts has a strongly positive impact on performance.

Another weak point of our current setting is that we were using default acoustic and lexical

models. Building, or at least tuning, the acoustic model on the collected telephone speech

considering the typical Pittsburghian caller and updating the lexicon with relevant vocabulary

should improve performance even more, as should the application of speaker adaptation and

normalization techniques [25]. We also suspect that a brute-force approach to parameter tuning

is more likely to find the global optimum than the greedy two-iteration approach.

As motivated before, we are presently applying the knowledge gained in this tuning experi-

ment to building open-source industry-standard-compliant spoken dialog systems [19]. In or-

der to supply the best possible performance to our systems, in addition to the aforementioned

measures, we are also considering to compare Sphinx with other free speech recognizers and

possibly apply system combination techniques (see examples in Section 2.2).
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