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Abstract: In HMM-technology state tying is an approved method to achieve reliable 

estimation of model parameters. This method is based on clustering sub-phonetic 

units, derived from context dependent phones. Due to the theory of HMMs the 

clustering algorithm assumes that the feature vectors are statistic independent within 

a cluster. We derive the sub-phonetic units from tri-phones and call the resulting 

clusters 'HMM-segments'. In this paper we develop a new clustering algorithm, 

which is based on the theory of Hidden Chunk Models (HCM). The algorithm takes 

into account the statistic dependencies of the feature vectors realizing the sub-

phonetic units. We call the resulting segments 'HCM-segments'. Both kinds of 

segments are modeled with HCMs. With these acoustic models we build two 

classification systems for context independent phonemes. Using a large Spanish 

speech database we compare the phoneme error rates achieved with the two kinds of 

segments. The HCM-segments showed higher performance. 

1 Introduction

In speech recognition research is focused on achieving low error rates for words or utterances. 

The error rate is influenced mostly by the features and by the acoustic model used. We focus 

on improving acoustic models by taking into account the statistic dependencies of features. 

The lowest error rate is achieved, when the principle of maximum likelihood classification [1] 

is applied. But when recognizing whole utterances for this approach the conditional density 

function (cdf) ��������	
��
	� must be known (�� denotes the sequence of feature vectors 

realizing the utterance). As the statistic bindings of the complete sequence �� must be treated, 

this cdf is too complex to be modeled as a statistical unit. In most LVCSR system, utterances 

are represented by sequences �������� of phonetic units (PU). It is assumed that the sequences of 

feature vectors representing a different �� � �������� are statistic independent. Further it is 

assumed that a suited parametric model��������� � ���� �� � ��� ���� for the distributions ���������� can be provided. The parameters �� have to be estimated reliably from a suited 

speech database. This approach leads to the following approximation for ��������	
��
	�:���������	
��
	�  ���������������  ! �"��## $���"#%� ��%      (1) 

 (In the following ��"&% denotes an approximation of a function �"&%. The warping function i(n)

maps the time index n of the sequences �� to the index i of the corresponding �� � ��������). To 

implement (1) three questions have to be answered 

- which PU should be chosen 

- how should the PU be modeled 

- how should the parameters � be estimated 

In [3] segmental models are proposed, which treat the PUs as statistical units i.e. the 

distribution �������� � ��� must model all the statistical bindings of the sequence of feature 

vectors ��. If the PUs are large enough i.e. cover large portions of the utterance, minimum 

error rates should be achievable, when the maximum likelihood classification method is 

applied. To the author’s knowledge, no segmental model for large PUs has been found, 

leading to competitive error rates. Many HMM based systems as [2] use as sub-phonetic units 
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PUs derived from context dependent phones (e.g. tri-phones) . Each phone is split into 3 parts, 

where for each phone each part is a specific ‘sound’ S. The set of sounds is very large and 

most sounds have very low probabilities of appearance. Even when using very large speech 

databases, it turns out, that for many sounds too few samples are available to estimate reliably 

the parameters of������'� ��. To solve this estimation problem, sounds are clustered. In HMM 

terminology this clustering scheme is called 'state-tying’, which was introduced in [4]. Each 

cluster defines an PU. We call those PUs ‘segments’ denoted by�(� � � � ����). The theory 

of HMMs assumes that the feature vectors within a segment are i.i.d. distributed (i.e. the 

feature vectors are statistic independent, and within a segment all feature vectors are identical

distributed) leading to the segment model  ����*�(� � ��� � ! �"�+$*+,- (� � ��%        (2) 

This model is not a segmental model [3], as the feature vectors �+ are statistic independent 

and the distributions �"�+$(� � ��% called the emission probabilities are identical for all �+.

Now we discuss the estimation process of the parameters �� of (2) in the context of clustering. 

For state of the art HMM-based speech recognition systems the MCE method is used for 

estimating the parameters���. This method delivers the minimal error rate for words or 

utterance given the wrong model assumption (1,2). The MCE method is a global optimization 

procedure, which minimize the error rate across words or utterances. To the author’s 

knowledge, there exists no such a global optimization scheme for clustering sounds to 

segments. Instead the optimal clusters are generated by clustering ‘similar’ sounds using the 

principle of minimal increase of entropy [4]. We call the resulting segments ‘HMM-

segments’. In section 2.2 we show, that this approach is linked to achieve minimal error rate 

to classify HMM-segments with a single feature vector. It is well known, that parameters, 

estimated to deliver minimal error rates on segments, do not lead to lowest error rates for 

classification of larger phonetic units as words.

Recently we investigated segmental models called 'Hidden Chunk Model (HCM)' [5, 6, 7], 

which realizes a specific segmental model [3]. In this approach the HCMs model HMM-

segments. For generating the HMM-segments the clustering is performed by a top down 

approach using a CART [10]. In contrast to the segment model (2) the HCMs take into 

account the statistic dependencies of the feature vectors within the HMM-segments.  

In this paper we evaluate a clustering scheme, which lead to different segments called HCM-

segments. Similar to the HMM approach, we use for clustering the sounds S derived from tri-

phones and we use the principle of minimal increase of entropy as in [4], but we take into 

account the statistic dependencies of the feature vectors within the sounds. Thus the clustering 

algorithm is consistent with the HCM-approach.  In order to see the advantage of using the 

HCM-segment instead of the HMM-segments, we make phone classification experiments 

comparing phoneme error rates achieved for both kinds of segments. The paper is organized 

as follows. In chapter 2 we develop the principles of clustering using Shannon’s conditional 

entropy [8] and describe the resulting algorithms for constructing HMM- and HCM-segments. 

Chapter 3 describes the experiments made. 

2 Clustering

The section 2.1 defines more precisely the relation between sounds composing a segment and 

sets of feature vectors realizing segments. Section 2.2 concerns the basic principles for 

clustering based on Shannon’s conditional entropy. Section 2.3 and 2.4 describes the 

algorithms to generate HMM-segments and HCM-segments. 
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2.1 Sounds, Segments and Related Feature Sets 

We use as context dependent phones tri-phones Phjc. The context c is defined by the right and 

left phone of the ‘central’ phone Phj. Each tri-phone is composed by 3 sub-phonetic sounds './�.1. � � � ��2�3, which can be interpreted as the onset, middle and offset of a phone. The 

sounds are clustered to segments.  

The HMM-segments are notated by Qi. They are defined by a mapping function � � 4"�� 5� 
%,
which maps all sounds './�.1.  to a segment Qi according to (� � 6�'./�.1. � 7�� 5� 
 8 �� � 4"�� 5� 
%�9�        (3) 

Thus the index i denote the phonetic properties p,j,c of all sounds S mapped to the HMM- 

segment Qi.

The HCM-segments are denoted by�(�.*. They are defined by an extended mapping function � � 4"�� 5� 
� :% depending additionally on the length l of the chunks realizing the segment:    (�.* � 6�'./�.1. � 7�� 5� 
� : 8 �� � 4"�� 5� 
� :%�9        (4) 

The index i denotes the phonetic properties of the HCM-segments determined by the sounds 

clustered. Due to the dependency of i from l, the same index i can be related to different 

phonetic properties p,j,c. Further we restrict the HCM-segments (�.* to a maximal value of 

l=m0. All sounds './�.1.  realized by chunks with l > m0 are mapped to�(�.;<.
We assume that the speech database is labeled; i.e. for each sound './�.1.  the corresponding 

sequence ��* is known (‘aligned’). Applying (3) and (4) the alignment of each segment to a 

sequences ��* is given. We call sequences ��* aligned to segments ‘chunks’. Now we define 

sets of feature vectors and sets of chunks. The set of all feature vectors found in a speech 

database, which realize a HMM-segment�(�, is notated by=� � >�# � (�?           (5) 

(n denotes the time/frame-index) All chunks ��*.# found in the speech database, which realize a 

HCM-segment (�.* is denoted by =�.* � 6��*.# � (�.*9           (6) 

The sets =� are used to estimate the parameters �� of the emission probabilities��"�$(� � ��% of 

the feature vectors X. The sets =�.* are used to estimate the parameters ��.* of the distributions ����*�(�.* � ��.*��. As described at the end of the following section, the clustering is done 

separately for each central phonemes Phj j=1…NPh using sets: =..*  6��*.# � (�.*� �7�� 
@�� � 4"�� 5� 
� :%�� 5 � ��� ���A� : � ��� �BC9.=*  D =..*EFG..,-. H    (7) 

=*�is the set of all chunks ��*.# of length l.

2.2 Basic Principles of Clustering 

In this subsection we discuss the clustering approach in the framework of HCMs. This 

approach is very similar to the clustering approach in the framework of HMMs. In subsection 

2.2.3 we sketch the HMM-approach.

The number of sounds S derived from tri-phones is notated by NS. We want to cluster these 

sounds into ��).;I segments under the condition��).;I J �K . ��).;I �has to be chosen in such a 

way that each set =�.* � 6��*.# � (�.*9 (6) contains enough chunks to estimate the parameters ��.*
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of  the distribution �����(�* � ��*�� reliably
1
.  Now the basic approach for clustering is 

formulated as follows: given the number ��);I of target segments we want to construct ��);I
clusters of sounds S, which minimize the segment error rate (SER). This MCE-approach is 

motivated by the segmental approach which lead to low error rates for words or utterance if 

large PUs would be used (see discussion in the introduction). To the authors knowledge there 

exist no efficient clustering algorithm based on the MCE-criterion.  Further our segments are 

very short PUs. Despite of these shortcomings, we stick to this basic approach but we use an 

approximation to minimize the SER. We use the fact that the SER is linked to Shannon's 

conditional entropy [8]�L"($M% (Z denotes chunks ��* for all l).  Within certain bounds [9] the 

SER decreases with decreasing�L"($M%. Thus minimizing L"($M% is linked to minimizing the 

SER within certain bounds. L"($M% is defined by L"($M% � N �"=*%L"(*$��*%O*,- � �L�(*���*� � L"(*% P L"=*% Q L"��*$(*%� PN �"=*%L"=*% Q N �"=*%O*,- "L"(*% QO*,- L"��*$(*%%L"(:%  PN �"(�:%�:RS��"(�:%�� � L�����:�(:�  PN �"(�:%� T ������:�(�:�:RS�������:�(�:�U����:V           (8) 

 To determine L"(:% the values of the discrete distribution �"(�:% are estimated from the size 

(counts) of the sets =�* (6). For estimating L���*�(� we approximate ����*�(�*� by a mono-

modal Gaussian: ����*�(�*� W �*���*�(�* � ��*� �� X"��*� Y��* � Z���*%� ��* � >Y��* � Z���*?                  (9) 

This approach is very crude, but few samples of chunks are needed to estimate the parameters ��* from the sets�=�*. Further leads this approach to an computational feasible algorithm (see 

(12)).Now we have to find���);I �clusters (�* from the��K sounds, which minimizes�L"($M%.
The term�N �"=*%L"=*%O*,-  is independent from the choice of the segments. Thus the 

minimum of L"($M% is given by the minimum of�["(%:B��)["(%� �["(%  N �"=*%;<*,- �L"(*% Q L"��*$(*%����6(�*9� � ��);I
Using (8, 9)��["(% is approximated by the log-likelihood function \"(% using the entropy L�X"��*� Y��]* � Z���*%� of a mono-modal Gaussian8["(% W \"(%  N \"(*%;<*,- � �\"(*%  �"=*% ^L"(:% Q N L"X"��*� Y��]*� Z���*%��(:�,- _
L�X"��*� Y��]* � Z���*%� � `*ab cd"2e	% Q -b :��Z���*�f�� L�(:� � PN �"(�*%�:RS��"(�*%��(:�,-

V       (10) 

(D denotes the dimension of a feature vector X. ��)* denotes the number of segments (�* with 

given l). We minimize \"(% separately for each component�\"(*% :B��)gh\�(*� � B��)gh ^N �"(�*% i:RS��"(�*% Q `*ab cd"2e	% Q -b :��Z���*�fj�Ekh�,- _ � : � ��� �BC         (11) 

The min operator (11) has exponential complexity with increasing number ��)* . We use as 

approximation a top down clustering method for generating HMM-segments [10] and a 

bottom up method for generating HCM-segments (see section 2.4). Applying these methods 

the change of the likelihood \"(*% has to be determined, when two segments clusters (�* � (�l* �are merged or split. The change of \"(*% is given by m�(��l* �  \�(��l* � P \"(*%,
where \�(��l* � denotes the log-likelihood function when in (11) the two segments (�* � (�l* are

substituted by the segment �(��l* � (�* n�(�l*  . Using (10) we get 

1 To the authors knowledge there exist no criterion for reliability. Large differences in error rates on the training 

database and the test database (mismatch) hint to poor estimation 
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m�(��l* � � ���(��l* � i:RS��"(��l* % Q -b :��Z����l*�j P ��(�*� i:RS��"(�*% Q -b :��Z���*�j P��(�l* � i:RS��"(�*% Q -b :��Z���l*�j          (12) 

According to [11, page 544]�m�(��l* � is always positive. We modify further (11) by 

introducing some restrictions, which sounds can be clustered. These restrictions are applied 

for HMM-segments and HCM-segments: We do not merge sounds belonging to different 

central phonemes �L.. This is done for two reasons. First we want to speed up computation as 

done in [4]; second we want to avoid that sequences of segments representing a phone of a 

central phoneme are equal for different central phones. Further we have to consider that each 

central phoneme �o. is represented by sequences of sounds�6'./�1 9� p � ��2�3. We do not 

cluster sounds belonging to different position p. This restriction eases the search algorithm 

needed for phoneme recognition, when skipping of segments is allowed (for some languages 

as for French this happens often in the QUAERO databases). Given all these restrictions, the 

minimum of (11) has to be evaluated only for restricted sets of sounds realized by the sets =.*
(see (7)). In this case the total number �.* of sounds realized by =.* is no more determined by 

the minimization procedure (11). We use following heuristic rule: �.* � ��=.*��);<� ��);< � N N �.*;<*,-EFG.,-         (13) 

2.3 HMM-Clustering 

For generating HMMs we have to estimate the parameters of the emission probabilities �"�$(� � ��% (see (2)). In analogy to (9) we use a monomodal Gaussian for clustering: �"�$(� � ��% � X"q� Yr� sr%� �� � >Yr� sr?          (14) 

In analogy to (10, 11) the log-likelihood function \"(% is given by \"(%  L"(% Q L�X"q� Yr� sr%�� �L�X"q� Yr� sr%� � `ab cd"2e	% Q -b :�$Z�$fL"(%  PN �"(�% ctu �"(�%� � �L"�$(%  PN �"(�%� T�"�$(�%:RS��"�$(�%U�H          (15) 

and we have to minimize B��)g\"(% � B��)g `N �"(�% i:RS��"(�% Q `ab cd"2e	% Q -b :�$Z�$fjEk�,- f   (16) 

To ease the calculation of the covariance matrices Z� we assume that they are diagonal with 

tied diagonal elements v�b leading to $Z�$ � v�ba This approach is motivated from the use of 

LDA-transformed feature vectors, which produces globally a covariance matrix with this 

structure. Equivalent to (12) we get m"(��l% � ��"(��l% i:RS��"(��l% Q -b :�$Z��l$j P �"(�% i:RS��"(�% Q -b :�$Z�$j P �"(�l% i:RS��"(�l% Q-b :�$Z�l$j             (17) 

To approximate (17) approximately, we use a top down clustering algorithm based on 

phonetic decision trees (CART) as described by [10]. We start with a single cluster, which 

contains all sounds. Then the cluster is split into two clusters in such a way that m"(��l% for the 

two clusters is maximal. Than the resulting clusters are split further till the chosen value �) is 

reached. The phonetic decision tree restricts the merging of sounds according to the rules 

encoded in the tree. 

2.4 HCM Clustering 

We apply a bottom up clustering method. If we would use each individual sound S as an 

initial segment we would run in the problem of many very small clusters =�* leading to 

unreliable estimates for the covariance matrices for evaluating (12). Instead we use as initial 

segments HMM-segments. For this purpose we create a large number �) of HMM-segments 

20



with �) w �);< and assume that most segments represent well the individual sounds S. We 

take the sets =� given from the HMM-segments and split each set =� to BC ‘extended’ sets =�*� : � ��� �BC (see (5, 6)). These extended sets represent 'extended HMM-segments'. Thus 

we have �);<  BC & �) extended HMM-segments (�*. With the extended HMM-segments 

we perform bottom up clustering. We start calculating �m�(��l* � of all�(�* � �(�l*  separately for 

each l and phoneme Phj . The pair of minimal increase of�m�(��l* � is merged giving a new 

segment�(��l* . This procedure is continued till the requested number �)* � : � ��� �BC� of 

HCM-segments is reached. This procedure approximates (11). The merging process is started 

only for segments, where the extended sets =�* are large enough to estimate the 

parameters���* � >Y��* � Z���*?. Especially the condition �Z���*� x y must hold. Each ‘small’ 

segment is merged to that final HCM-segment with the smallest heuristic distance. 

3 Evaluation of HCM- and HMM-Segments 

The experimental set up is the same as described in [6], where a Spanish speech database 

from the QUAERO project [12] was used. As primary features we use 16 MFCCs per frame 

with a frame rate of 10ms. The feature vectors are constructed in two steps. First a super 

vector of dimension 144 is build concatenating the 4 right and left MFCC vectors inclusive 

the central MFCC vector.  The super vector is transformed by an LDA, which reduces the 

dimension to a 24 dimensional feature vector. Table 1 shows the amount and probabilities of 

chunks. As the probabilities �"=*% of the chunks ���* for : x 3 are very small, we set m0=3

i.e. segments (�* for l=1,..., m0 are constructed. 

Language # chunks # chunks length l of chunks & �"=*%�� z
training test 1 2 3 4 5  { |

Spanish 7 721 815 570 492 26.3 62.5 6.4 1.9 0.8 2.2 

Table 1 - amount of data and probability �"=:% of the chunks ��*#
We start generating 604 HMM-segments (NQ=604) using the CART described in section 2.3. 

The CART is provided from the speech research group of Prof. Ney (Chair of Informatics, 

RWTH). The HMM-segments are transformed to extended HMM-segments as described in 

section 2.4. We take the BC & �) � �}�2 extended HMM-segments (�*� : � ��� �BC� � ���� ��). In this experimental set up the extended HMM-segments are used for two purposes.

First they are used for making phoneme recognition experiments second they are used as 

starting segments for constructing HCM-segments. This experimental set up is not optimal 

because the amount of HMM-segments to start the clustering should be much larger (see 

chapter 'conclusion'). In this set up the 1812 extended HMM-segments are clustered down to  

the target number of �);< � �22y HCM-segments.  

# extended HMM- #  HCM- HMM HCM

l segments segments  L"(*% L"(*%
1 604 435  8.80  8.42

2 604 436  8.92  8.50

3 604 349  8.82  8.22

4 604 349  8.53  7.98

5 604 349  8.06  7.52

Table 2 – number of extended HMM-segments and HCM-segments for l=1,...,5 and the related entropies (in Bit) 

Given the probabilities �"(�*% of the extended  HMM-segments and HCM-segments the 

related entropies L"(*% (8) are calculated (see table 2). These entropies and all other entropies 
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have as units bit, i.e. they are calculated using as log-function the base 2. L�(:�is the number 

of bits needed from the information of the features to achieve a segment error rate (SER) of 

SER=0. As we have less HCM-segments than extended HMM-segments for each length the 

entropies L"(*% are lower for HCM-segments.

Given the extended HMM-segments and the final HCM-segments, the HCM-classifiers are 

trained for both segments using as acoustic model: ��*���*�(�* � ��*� � N 
�]*�"~gh],- ��*� Y��]*� Z��*%����* � 6Y��]* � Z��*9      (18) 

In (18) we have to distinguish between the extended HMM-segments and HCM-segments, 

which are both notated as (�*. The same holds for the related parameters ��*.The covariance 

matrices Z��* of the multimodal Gaussians are tied as described in [6]. The HCM-parameters ��*
are trained using the unified EM algorithm [13]. This algorithm has to be adapted for the 

HCM approach. The EM-algorithm uses instead of the feature vectors chunks. For 

classification of the two kinds of segments we use a maximum likelihood classifier (� ��
SB�����*���*�(�* � ��*��"(�*%�. For classifying a context independent phonemes Phj we have 

to regard all Nj sequences of segments '(#� � �. � ��� ��.  building that phoneme. For a 

given test database we have to classify phonemes �o.*FG realized by a sequence of :�A feature 

vectors and realized by a sequence '(#�*FG � �(��*� � � � ��2�3� of 3 segments (this corresponds 

to the split of a phone into 3 sounds (see section2.1)). We assume, we know the length :1 of 

each segment (��*� � � � ��2�3�. Thus the classification task is to determine the indices �1� � ���2�3 The maximum likelihood classifier is given by ��o�.*FG � ��u���� `p"q������$�o.��� � :�� � � ��2�3%"�o.���%f�"����:�o��o�:�o � :�� � � ��2�3� � N �"(#�*FG$���:�o%E�#�,- ! �:� `����:��(�"#��1%:� � ��"#��1%:� � f3p�� � �
In [14] we regarded additionally the case that the length :1 is not known. This knowledge 

leads to slightly higher SERs. Shannon's conditional entropies L�(*���*� � L"(*% P L"=*% QL"��*$(*% (see (8)) is the information missing to classify the segments (�* of given length l

without error. We approximate L�(*���*� by the method of Monte Carlo [15] as done in [14]. 

As shown in table 3 the high values of L�(*���*� corresponds to the high values of SER. Table 

3 shows that the SERs using the extended HMM-segments are lower than those of the HCM-

segments. This is a strange result to be further explored, because the HCM-segments show 

much lower values for L�(*���*�. Although less segments are used the phoneme error rate 

(PER) is lower for HMM-segments. 

Extended HMM-segments HCM-segments

�� length l of chunks

PER

length l of chunks�

�

PER

# 1 2 3 1 2 3 # 1 2 3 1 2 3 

modes SER �"�$q����%  modes SER �"�$q����%
1 812 82.9 73.1 62.6 6.72 6.13 5.91 41.8 1 220 83.1 73.4 62.9 6.22 5.30 4.66 41.5

3 624 79.8 71.4 60.5 6.71 5.89 5.51 39.4 3 624 80.4 71.3 62.9 6.22 5.40 5.00 39.0

10 872 77.5 70.5 59.6 6.23 5.75 5.35 38.1 10 872 78.0 71.1 61.9 5.85 5.28 5.02 37.7

Table 3 - SER, PER and L"($��*% for HCM-segments and HMM-segments 
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5 Conclusion

We derived a theory for clustering sounds to segments, where the clustered sounds are 

modeled by HCMs. The theory is based on cluster-algorithms minimizing Shannon’s entropy 

using the concept of HCMs. We presented preliminary experiments showing that HCM-

segments lead to slightly lower phoneme error rates. This encouraging result is in contrast to 

higher SERs, which still has to be explored. Further in this experiment, the initial amount of 

HMM-segments is low. In future we will experiment with larger amount of HMM-segments.  
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