
CONSTRUCTING PETRI NET TRANSDUCERS WITH PNTε

OOL

Markus Huber Robert Lorenz Daniel Straßner

Department of Computer Science

University of Augsburg

markus.huber@informatik.uni-augsburg.de

Abstract: Petri net transducers (PNTs) were developed for the translation of ut-

terances into meanings within a hierarchical cognitive dynamic speech signal pro-

cessing system [9, 10].

PNTs are a natural generalisation of weighted finite state transducers (FSTs) for the

translation of partial languages consisting of partial words (with a partial order on

their symbols) instead of (linear) words (having a total order on their symbols).

PNTε

ooL is a python library for the modular construction of PNTs through compos-

ition operations. Constructed PNTs can be exported in an XML-format which is

based on the standard PNML format developed for basic Petri net variants [16].

Moreover, PNTs can be visualised and pictures can be exported in all standard

formats. PNTε

ooL serves as a basis for the implementation and evaluation of al-

gorithms for analysis, simulation and optimisation of PNTs.

PNTε

ooL is implemented within the framework SNAKES aiming at the quick proto-

typing of new Petri net classes [12, 13]. Its basic functionality was developed in the

bachelor thesis [15].

1 Introduction

In [9] we introduced Petri net transducers and showed in [7, 10] how they can be successfully

applied in the field of semantic dialogue modelling for translating utterances into meanings.

In short PNTs are a formalism for the weighted translation of labelled partial orders (LPOs),

which are words consisting not of a total order between their symbols but of a partial order. In

this sense they are a generalisation of weighted finite state transducers translating words.

In figure 1a on the following page one can see two simple PNTs called N1 and N2. A PNT con-

sists of transitions (drawn as rectangles), places (circles) and a flow relation between places and

transitions (directed edges). The flow relation assigns pre- and post-conditions to transitions.

The state of a PNT is given by tokens marking places (black filled circles inside places). If a

place is marked by a token, then the corresponding condition is satisfied. The occurrence of

a transition is possible, if all of its pre-conditions are satisfied. Its occurrence leads to a state

where none of its pre-conditions and all of its post-conditions are satisfied. Like for weighted

FSTs input symbols, output symbols and weights are annotated to the transitions. The weights

are elements of an algebraic structure called bisemiring [9]. So the transition of N1 reads the

symbol a and writes the symbol x (with weight 0.5) – thus N1 translates the word a into the

word x (with weight 0.5). The symbol ε is used to denote empty input or output. So the PNT

N2 is a generator which produces the word y.

The main difference to automata is that the state of a PNT is distributed over several locations.

If, in some state, two transitions do not share pre-conditions and all pre-conditions of both

transitions are satisfied, then both transitions may occur independently in any order or also

110

a:x/0.5

N1

ε:y/0.25

N2

(a) A transducer and a generator.

ε:y/0.25

t1

a:x/0.5

(b) Parallel product of N1 and N2 after tI has fired.

Figure 1: Some simple PNTs.

simultaneously. Such transitions are called concurrent (in the considered state). To be able

to combine the weights of concurrent transitions, a bisemiring extends the weight structure of

semirings used in the case of FSTs by an operation for parallel multiplication of weights.

As for FSTs there exist composition operations for combining simple transducers to more com-

plex ones. For example, figure 1b shows the parallel product of the PNTs from figure 1a – an

operation which does not exist for FSTs. In figures, we omit annotations of the form ε:ε/1

where 1 is the neutral weight w.r.t. sequential and parallel multiplication. The PNT from fig-

ure 1b is not in its initial state – a single token in a distinct source place – but in the state after

the transition t1 has occurred. In this state there a two transitions which can occur concurrently.

The shown transducer realises the translation from the word a into the LPO w=x‖y where ‖
denotes the parallel composition of LPOs and the two symbols x and y are unordered in w.

Note that PNTs are defined to always have a single source place which holds exactly one token

at the initial state. Furthermore a PNT has a single sink place and per definition only such (non-

sequential) runs of the net are considered, which lead to a state where exactly the sink place is

marked by one token.1

For such a formalism to be useful one needs a tool where PNTs can be implemented, analysed,

combined, simulated, drawn and the like. Since the PNT-formalism is new we decided to start

PNTε

ooL. We use the SNAKES framework [13] which is a Python [17] library supporting the

rapid prototyping of new Petri net formalisms and provides many basic Petri net components

and functionality. Therefore we implemented PNTε

ooL as a Python library extending SNAKES

such that we essentially can use all the functionality already provided by SNAKES. All graphics

in this paper were generated by PNTε

ooL.

The paper is organised as follows: In section 2 we describe the objectives of PNTε

ooL. In sec-

tion 3 we explain its functionality. In section 4 we give a brief overview of its architecture.

Finally, in section 5 we compare PNTε

ooL to other Petri net tools, give a brief outlook on further

developments, and provide information on how to obtain and install PNTε

ooL.

2 Objectives

PNTε

ooL is mainly targeted at researchers in the area of PNTs. By the use of SNAKES it is

relatively easy to implement and evaluate extensions, variations and new algorithms2, as for

example: Additional composition operations, optimised algorithms for existing composition

operations, new algebraic weight structures, simulation algorithms, and optimisation algorithms

(ε-removal, weight-pushing).

The support of graphical output serves both as a possibility to check the implementation and

as a handy utility in the process of writing scientific papers. PNTε

ooL’s functionality supports fast

1Runs are LPOs over transition names. Each run translates an input LPO into an output LPO via a projection

onto input symbols resp. output symbols [9].
2The SNAKES website states: “SNAKES’ main aim is to be a general Petri net library, being able to cope with

most Petri nets models, and providing the researcher with a tool to quickly prototype new ideas.”

111

construction of concrete example PNTs for case studies. PNML export can be used to analyse

constructed example PNTs with other Petri net tools.

In the context of our research activities, PNTε

ooL serves as a scientific prototype for the devel-

opment of an open library openPNT of efficient algorithms for the construction, composition,

simulation and optimisation of PNTs which can be used in real world examples.

3 Functionality

In this section we show how PNTε

ooL is used to construct and compose PNTs. We list the source

code of the examples and also show the graphics produced by the programme.

To use PNTε

ooL one has to create a text file and put the following code into it. These lines load

the SNAKES library and the transducer-plugin.

1 i m p o r t s n a k e s . p l u g i n s

2 s n a k e s . p l u g i n s . l o a d ([’transducer’] , ’snakes.nets’ , ’pnts’)

3 from p n t s i m p o r t ∗

We now create our first PNTs and produce the two outputs from figure 1a on the previous

page. For this the class method N from the class PetriNet is used. This way in lines 4 and 7

each a PNT consisting of a source place with one token, a sink place, and a single transition

in between is created. As one can see the parameters of this single transition are provided

as named parameters to N. In lines 5 and 8 graphical output of the PNTs is generated. Note

that the orientation of the generated graphs is controlled by the parameter leftright of the

method draw in those lines. This parameter is only effective if TikZ-output is to be created

(see subsection 4.3.1 for prerequisites). The format of the output is controlled by the extension

of the file-name given to the method draw as first argument. For example in line 17 on the

following page a PNT is exported into the PNG format which is shown in figure 2c where one

can see that tokens are not drawn as filled circles but instead are given by its count inside a

place. For more available export formats one may consult the documentation of the Graphviz

[6] package which is utilised by SNAKES for the export.

4 n1 = P e t r i N e t .N(’N1’ , w e i g h t = . 5 , i n p u t _ s y m b o l = ’a’ ,

o u t p u t _ s y m b o l = ’x’)

5 n1 . draw ("N1.tikz" , l e f t r i g h t = True)

6

7 n2 = P e t r i N e t .N(’N2’ , w e i g h t = . 2 5 , o u t p u t _ s y m b o l =’y’)

8 n2 . draw ("N2.tikz" , l e f t r i g h t = True)

Now we use the operator of parallel composition in line 9 to create the PNT from figure 1b

on the previous page. After the composition we change the left one of the new transitions. By

default, transitions which are added during compositions get the name t_I if they are connected

to the source place and t_F if they are connected to the sink place. If two transitions are added

they are named t_1I and t_2I resp. t_1F and t_2F. By using the method transition

in line 10 with a name as parameter we receive the transition object corresponding to this name.

We change the label of the transition – its print_name – to t_1 in line 11 which gets rendered

as t1 by LATEX if our sty-file is used with the option petrimath putting the text of places

and transitions in math-mode. In line 12 the transition is fired according to the description of

occurrence in the introduction. To finally get the picture from figure 1b one has to adjust the

position of the label a:x/0.5 in the generated TikZ-Code (output of line 14) since it is positioned

above the transition by default (see subsection 4.3.1 for more information).

9 n = n1 | n2

112

1 r

x:a/0.25

(a) PNT N3.

t4

t1

pF

p4

pI

r,t3 x:x/0.125

t2

ε:y/0.25

p1

p3

p2

(b) Language composition.

(c) PNT from figure 1b with new

names as PNG.

Figure 2: Some more PNTs.

10 t = n . t r a n s i t i o n (’t_I’)

11 t . s e t _ p r i n t _ n a m e (’t_1’)

12 t . f i r e ()

13

14 n . draw ("N1 par N2.tikz" , l e f t r i g h t = True)

Subscripts can be also rendered in graphical output if the version of Graphviz supports HTML.

The HTML output of PNTε

ooL can be switched on and off according to lines 15 and 18. In

line 16 we change the print_names of all places and transitions via topological sorting. If

the transducer contains any cycles an error is raised. The output of line 17 is shown in figure 2c.

15 a c t i v a t e S u b ()

16 n . c l ean_names (p r i n t _ n a m e s = True)

17 n . draw ("N1 par N2.png")

18 d e a c t i v a t e S u b ()

We create another PNT in line 19 and change the label of its only transition which is named t by

default in line 20. The drawing of n3 is shown in figure 2a. In line 23 the language composition

of the newly created PNT and the transducer from figure 2c is computed. The result is depicted

in figure 2b (output of line 24). Note that the print_names were retained resp. merged by the

composition operation. The weight of the transition labelled r, t3 is computed from the weights

of the transitions labelled r and t3 using the sequential product of the bisemiring associated to

the PNTs. This structure defaults to a bisemiring based on the Viterbi-semiring with min as

parallel multiplication. Whenever transitions are merged their weights are also merged and an

error is raised if the bisemirings of the operands are different.

19 n3 = P e t r i N e t .N(’N3’ , w e i g h t = . 2 5 , i n p u t _ s y m b o l = ’x’ ,

o u t p u t _ s y m b o l = ’a’)

20 n3 . t r a n s i t i o n (’t’) . s e t _ p r i n t _ n a m e (’r’)

21 n3 . draw ("N3.tikz" , l e f t r i g h t = True)

22

23 comp = n3 > n

24 comp . draw ("N3 comp N1 par N2.tikz" , l e f t r i g h t = True)

As a last example we export a PNT with the function savePNML – a wrapper of SNAKES

methods – taking a file-name as second argument. For loading we provide loadPNML.

25 savePNML (n , "N1 par N2.pnml")

113

There are more operators defined for PNTs namely * for concatenation, + for union, ˜ for

closure, and ˆ for synchronous product as defined in [10].

4 Architecture

PNTε

ooL is implemented as a bunch of plugins on top of SNAKES and thus as a Python library.

At first we describe some aspects of SNAKES itself and afterwards of its plugin-system. After

that we present all the plugins that form PNTε

ooL.

4.1 The Python Library SNAKES

In SNAKES Petri nets are implemented as a collection of objects. The class PetriNet puts

them all together as it contains objects of the classes Place and Transition – through the

methods add_place and add_transition – and provides the methods add_input and

add_output to link places and transitions.

Actually SNAKES implements so-called coloured Petri nets [8] where Python objects and

expressions are used for the annotations. However PNTε

ooL does not use most of these features.

SNAKES allows for firing of transitions by the method fire of class Transition. The

class StateGraph provides a method build which can compute the state graph for a given

net. As nets, state graphs can also be exported to pictures by the use of the method draw.

Another feature also present in the core of SNAKES is the export in PNML format.

For extensibility SNAKES implements a plugin-system briefly described in the next subsection.

4.2 The Plugin-System of SNAKES

A plugin for SNAKES is a separate Python library which specialises already defined classes or

adds new classes to SNAKES. Plugins can be loaded and are stacked onto each other. This way

a class hierarchy is established.

A function extend has to be implemented and some rules have to be followed for which the

interested reader should refer to the SNAKES homepage.

A plugin can depend on other plugins and can even mention conflicting plugins.

4.3 The Plugins of PNTε

ooL

The following subsections describe each of the plugins that comprise PNTε

ooL. The first and

fourth plugins can be used independently from the other plugins while the remaining three

build upon each other.

4.3.1 The d2t-Plugin

This plugin extends the features of the gv-plugin which is delivered with SNAKES. By the

use of that plugin a representation of Petri nets in the dot-language from Graphviz [6] can be

produced which is then processed by Graphviz to compute a layout and eventually produce a

graphical output. Our d2t-plugin adds four features to the graphical output routine.

The first one hooks into the code of gv-plugin. The dot-language is able to embed HTML

constructs inside of labels. We utilise this to produce subscripts by replacing for example a

label t_I with the text <t<subscript>I</subscript>> which produces the nice label

tI. This functionality can be switched on and off by the use of the functions activateSub

and deactivateSub which are both exported into to global namespace by our plugin.

114

The second feature adds an attribute _print_name to places and transitions which can be

changed by the method set_print_name and queried by the method print_name for any

object of class Place or Transition. This attribute can be used by the graphical output

routine for example to label only those nodes which have assigned a _print_name. This can

lead to more lucid graphics.

As a third feature the plugin adds an attribute _draw_defaults to Petri nets which is set to

a new object of class DrawDefaults. Such an object contains class-wide default values, per

object default values and per object functions to influence the output of the method draw if all

of its *_attrs-parameters have a value of None. The purpose of this attribute is to associate

certain defaults to a net which change the graphical output of its components. All values and

functions can be changed by the methods set_draw, del_draw, set_draw_attr, and

del_draw_attr of class PetriNet.

The last feature adds TikZ as a new export format to the draw-method of Petri nets. The export

utilises the package dot2tex [1]. This package can convert the dot-language into various

other formats. However we only use the ability to convert into the TikZ-language. Using this

feature we are able to integrate the graphical output of PNTε

ooL seamlessly into papers written

in LATEX – like this one. Note that the position of annotations of transitions is not retained by

this conversion and requires manual intervention. For convenience we provide the possibility to

change the orientation of the generated TikZ-output to left-to-right.

4.3.2 The pt-Plugin

As already said in subsection 4.1 SNAKES implements coloured Petri nets. Since the under-

lying net of a PNT is actually a place/transition Petri net we decided to write a plugin which

restricts the nets of SNAKES by only allowing those constructs which are needed for them.

At first, the type of tokens is restricted to tBlackToken, the type of simple tokens of

SNAKES. An error is raised if one tries to install other type restrictions for tokens. The given

tokens are revised and an error is raised if other than simple tokens are to be used. For con-

venience any list of integers can be used instead of simple tokens. The sum of the list gives the

number of simple tokens for the place.

Transitions received a restriction on their guards. Since the firing of transitions in place/trans-

ition Petri nets only depends on enough tokens in all places which are predecessors of the trans-

ition there is no guard needed. In SNAKES this means the guard is Expression("True")

which is the default if None is given as a parameter. Consequently only these two values are

allowed and an error is raised otherwise. The method fire gets None as a default value of its

parameter binding since only simple tokens are used and no variables are involved.

The last restriction concerns edges. Place/transition Petri nets only allow for positive integers

which state the number of tokens to be consumed resp. produced.

4.3.3 The terminal-Plugin

By using the pt-plugin and adding a few features to the class PetriNet, this plugin im-

plements Petri nets that have a single source place and single sink place. Although SNAKES

delivers the label-plugin to add properties to any node of a net we decided to implement our

own mechanism because we only need a fraction of its functionality.

With these properties it is possible to define several composition operations. While SNAKES

delivers the ops-plugin which implements composition operations according to [3] we imple-

mented our own mechanism because the definitions of the operations defer. Our plugin im-

plements union, sequential_product, parallel_product, and closure. By the

use of the cluster-plugin delivered with SNAKES the operands get preserved in the layout.

115

Additionally we provide a notation to create a singleton net consisting of a source and a sink

place and a transition in between. This feature is implemented as the class method N of class

PetriNet. To support future extensions we use factory methods [5] for the creation of the

places – create_source and create_sink – and the transition – create_link.

4.3.4 The bisemiring-Plugin

We implemented the class Bisemiring and the association of weights to transitions in a

separate plugin. Bisemiring objects hold definitions of the set of weights, neutral elements

and functions for binary addition, sequential and parallel multiplication of a bisemiring.

A Petri net now contains an object of class Bisemiring – as default a Viterbi-based bi-

semiring which uses min for parallel multiplication. Every transition has a weight which

can be checked against the bisemiring of the net. If transitions get merged by the method

merge_transitions an operation can be specified to compose the individual weights.

4.3.5 The transducer-Plugin

The last plugin builds on top of the terminal- and bisemiring-plugin and equips trans-

itions with input- and output-symbols which can be arbitrary Python objects. An additional class

implements the ε-symbol. The N-notation of subsection 4.3.3 is extended to support weights

and input- and output-symbols for the single transition.

This plugin implements the additional composition operations of synchronisation and language

composition [10] as methods synchronous_product and language_composition.

As syntactic sugar we overloaded some operators for the class PetriNet.

Also the graphical output of transitions is changed using the functionality of d2t-plugin. The

generated TikZ-code uses definitions from a separate sty-file to provide adaptable graphics.

5 Outlook

Up to our best knowledge, PNTε

ooL is the first tool concerning PNTs. There are several other Petri

net dialects dealing with transitions annotated with weights, such as stochastic Petri nets, time

Petri nets, hybrid Petri nets or continuous Petri nets. But these values have a strictly different

semantics (they represent e.g. time or priorities) and need no underlying algebraic structure.

Some of the algorithms we implemented or plan to implement for PNTs are similar as in the

case of other Petri net classes and tools. For example there are several Petri net classes sup-

porting composition operations which are similar to some of those for PNTs (as for example

the PBC [3]). As another example, simulation of PNTs is based on unfolding algorithms for

place/transition Petri nets as implemented for example in VipTool [4]. Nevertheless, it is not

possible to use these similar constructions directly, since syntax and semantics are different and

cannot be translated to PNTs.

Other PNT algorithms as for example concerning some special composition operations like

language composition, optimisation of PNT models or the algebraic weight structure are not

comparable to any functionality of existing Petri net tools. Concerning such algorithms, PNTε

ooL

is more related to the open library openFST [2] for FST algorithms. As already mentioned, we

plan to develop a similar open library of PNT algorithms based on the prototype PNTε

ooL.

PNTε

ooL can be downloaded from our website www.informatik.uni-augsburg.de/

lehrstuehle/inf/mitarbeiter/huber/software/ as a ZIP-archive. Assumed

you have a working installation of Python, SNAKES, Graphviz, and dot2tex you only need to

copy the py-files into the plugins sub-directory of your SNAKES installation and you should

be able to reproduce the examples from section 3. The mentioned sty-file is also included.

116

References

[1] dot2tex. http://code.google.com/p/dot2tex/, 1 2014.

[2] C. Allauzen, M. Riley, J. Schalkwyk, W. Skut, and M. Mohri. Openfst: A general and ef-

ficient weighted finite-state transducer library. In Proceedings of the Twelth International

Conference on Implementation and Application of Automata, (CIAA 2007), volume 4783

of Lecture Notes in Computer Science, pages 11 – 23. Springer, 2007.

[3] E. Best, R. R. Devillers, and J. G. Hall. The box calculus: a new causal algebra with

multi-label communication. In Rozenberg [14], pages 21 – 69.

[4] J. Desel. VipTool-Homepage., 2010.

[5] E. Gamma, R. Johnson, R. Helm, and J. Vlissides. Design Patters: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Boston, 2003.

[6] E. R. Gansner and S. C. North. An open graph visualization system and its applications

to software engineering. SOFTWARE - PRACTICE AND EXPERIENCE, 30(11):1203 –

1233, 2000.

[7] M. Huber, C. Kölbl, R. Lorenz, and G. Wirsching. Konstruktion von UMP-Transduktoren

aus Wizard-of-Oz Daten. In Proceedings of ”Elektronische Sprachsignalverarbeitung

(ESSV)”, pages 111 – 118, 2013.

[8] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical Use,

volume 1 of EATCS Monographs in Theoretical Computer Science. Springer, 1992.

[9] R. Lorenz and M. Huber. Petri net transducers in semantic dialogue modelling. In Pro-

ceedings of ”Elektronische Sprachsignalverarbeitung (ESSV)”, volume 64 of Studientexte

zur Sprachkommunikation, pages 286 – 297, 2012.

[10] R. Lorenz and M. Huber. Realizing the Translation of Utterances into Meanings by Petri

Net Transducers. In Proceedings of ”Elektronische Sprachsignalverarbeitung (ESSV)”,

volume 65 of Studientexte zur Sprachkommunikation, 2013.

[11] S. Molnár, J. R. Heath, O. Dalle, and G. A. Wainer, editors. Proceedings of the 1st Inter-

national Conference on Simulation Tools and Techniques for Communications, Networks

and Systems, SimuTools 2008, Marseille, France, March 3-7, 2008. ICST, 2008.

[12] F. Pommereau. Quickly Prototyping Petri Nets Tools with SNAKES. In Molnár et al.

[11], page 17.

[13] F. Pommereau. The SNAKES toolkit. https://www.ibisc.univ-evry.fr/

~fpommereau/SNAKES, 2013.

[14] G. Rozenberg, editor. Advances in Petri Nets 1992, The DEMON Project. Springer, 1992.

[15] D. Straßner. Prototypische Implementierung von Petrinetz-Transduktoren mit SNAKES.

Bachelor thesis, Augsburg University, 2013.

[16] P. team. Pnml.org: The petri net markup language home page. http://www.pnml.

org, 8 2011.

[17] G. van Rossum and F. L. Drake. The Python Language Reference Manual. PythonLabs,

Virginia, USA, 2001.

117

