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Abstract: We investigate acoustic models for segments, which are sub-phonetic
units derived from clustered tri-phones. For each segment Q; we evaluate acoustic

models approximating the conditional density function (cdf) p(X l|Q ) of sequences

X , of features vectors aligned to a segment ;. We name those aligned sequences X !
'chunks'. The quality of the acoustic models is evaluated by segment error rates

(SER) and Shannon's Conditional Entropy H(Q|)? 1). Further we develop a new
method to answer the question, how close an acoustic models approximates the cdf

p()?llQi). The method is based on the simulation of model generated chunks

(MgCs), which have a cdf as given by the acoustic model. We evaluate Hidden
Markov Models (HMMs) and Hidden Chunk Models (HCM) realized by GMMs

with tied covariance matrices. Comparing the SER and H(Q|)? 1) for the same amount
of modes for HMMs and HCMs we see that HCMs perform in general better than
HMMs. Evaluation experiments with MgCs show, that both acoustical models are

still far away from the real distribution p()? l|Qi). It is still an open question, weather
GMMs with tied covariance matrices are good candidates to approximate the

p()? l|Qi) or weather any explored mixture show with increasing number of modes
slow convergence to p()? l|Qi).

1 Introduction

This paper is focused on evaluating acoustic models for sub-phonetic units called segments,
which are derived from clustered tri-phones. The clusters are constructed by a CART as used
in HMM technology. Each clustered tri-phones is modelled by 3 segments, where each
segment can be interpreted as the acoustic representation of either the onset or the middle or
the offset of a tri-phone cluster. In total we regard about 600 segments yielding about 1500
tri-phone cluster. The duration of the segments is rather short. As explored by 3 large speech
databases [12] recorded for 3 languages most segments have a duration of about 30ms. Using
frame shifts of 10-15ms we found, that more than 92% of the segments are realized by 1-5
feature vectors. Due to this small amount of feature vectors aligned to a segment it seems to
be feasible to find an acoustic model, which comes close to the exact distribution of all
features building a segment. If the acoustic model approaches the exact distribution, the
lowest segment error rate possible could be reached. Segment models [1,2] have the potential
to achieve this goal. According to the segment model approach, the conditional density

function (cdf) pl()_()l|Qi) of the complete sequence )?l = [X}, ..., X,, ... X;] of feature vectors
aligned to a segment Q; is regarded. We use a specific segment model called Hidden Chunk

Model (HCM) [3], where each aligned sequences X 1 1s called a 'chunk'. For each length / of a
chunk a specific HCM depending on / has to be trained [12]. We use Gaussian Mixture
Models (GMMs) with tied covariance matrices to construct HCMs. For chunks of length /, the
HCM is given by:

51(X1|Q:) = Ty coraN (X fligas Vi) (1)

The tying approach of the covariance matrices I—/} is motivated by the use of LDA transformed
features, which normalize to a certain extend the covariance matrices of the individual
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segments and which lead to good performance in HMM based LVCSR systems [14]. Each
mean vector Iy is a composition of / mean vectors iy = [Uiki1s - -» Hikul- A Hixy can be
interpreted as a trajectory or a template of feature vectors in the acoustic space of an
‘exemplar sound’. To interpret Vl and [, in (1) more intuitively, we assume that each
trajectory fi;;; corresponds to a specific articulator gesture. We postulate that gestures of the
same segment Q; produced with different speed - given by / - lead to significant different
acoustic realizations. Thus different speed / should lead to different means p;y;,,. Variations of
the gestures are expressed by the covariance matrix Vl and by the modes £.

Within this paper we want to compare the performance of Hidden Markov Models (HMMs)
[4] with HCMs for segments. We measure performance by evaluating segment error rates
(SER) and Shannon's conditional Entropy as discussed in section 2.1. The acoustic model of
HCMs is given by (1). The acoustic model for a segment using HMMs is given by
P (X,]Q:) = =15, (X51Q0) @

The emission probabilities pg,(X,|Q;) is the probability, a state S; - assigned to a segment -
emits a feature vector. In analogy to (1) we model the emission probabilities by GMMs with a
single tied covariance matrix. As seen on relation (2) HMMs assume, that the feature vectors
are independently distributed and that all feature vectors of a segment are identically
distributed. In HMM technology it is well known that the performance increase with
increasing amount of modes of the GMMSs. In order to make a fair comparison between
HMMs and HCMs we evaluate error rates and Shannon's entropy for the same number of
modes. As shown in chapter 3 the HCMs perform to a great extend better than the HMMs.

For any acoustic model it is an open question, weather a model is close to the exact

distribution pl()? l|Qi)- To answer this question we developed a new paradigm to evaluate
acoustic models, which is based on simulating specific chunks call Model generated Chunks
(MgCs). On the basis MgCs we define MgC-distances, which describe the distance of the
model to the exact distribution. The new evaluation method is described in detail in section
2.2. Experimental results are shown in chapter 3.

2 Evaluation Methods

In speech recognition the most relevant method for measuring the performance of acoustic
models is the error rate achieved on a given speech database for given phonetic unit. For this
demand we evaluate segment error rates (SERs) for HMMs and HCMs in section 2.1. Further
we evaluate on the basis of Shannon's conditional entropy the bounds of SERs in the same
section. The SER achieved depends closely on the quality of approximation of the model to
the exact distribution pl()? 1 |Ql-, l). A popular approximation measure is given by the
Kullback-Leibler distance, which in our case has to be evaluated for GMMs. There exist a
rich literature on finite mixture models [15], but to determine the KL-distance the exact
distribution pl()? l|Ql-, l) must be known. As this is not given we describe in section 2.2 a new
evaluation method, which allows to determine the distance between the real distribution and

the model, even the cdf pl()_() 1|Qi, l) is unknown.

2.1 Error Rates and Shannon's Conditional Entropy

We assume that a given speech database is labeled in such away, that each chunk aligned to
the segments is given. Given the chunks we perform classification experiments using a
maximum likelihood classifier

Q = argmax;(5,(X,|Qu )P(Q:|D) 3)
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1 ()? 1|Ql—, l) denotes the acoustical model for pl()? llQi; l). We use as a-priori probability the
duration dependent discrete distribution P(Q;|l). Based on (3) the segment error rate (SER)
can be evaluated.

In order to find bounds for SERs we use Shannon’s conditional Entropy [6,10]. Given
segments Q; ,i=1,....Np realized by chunks )?l of length / Shannon' conditional entropy
Hl(Ql)?l) is defined by

Hy(Q|X)=H(@-1;(X;;Q); ;(X1;Q)=H (X)) -H(X1Q) )
N . - R
H(@=-£,_2 P(Q;IL) 1og (P(QIL)); Hy(X))=— | p(Rplog p(X)) dX) !

N . 4)
p(Xp=3,;2 P(QiI)p,(X11Qp)
- N - - -
H)(%11Q)=-3;_2 P(Qill) | p1(X11Qp) log py(X11Qp) dX; J
H;(Q) is the information needed to recognize the segments Q; aligned to a chunks of length /

without error. The mutual information [, ()? U Q) is the information gained from the chunks X l-
Whenever the relation H;(Q) > Il()?l;Q) holds, errors occur. Given Hl(Q|)?l) upper and
lower bounds for the SERs are known. We use as lower bound the Fano bound [7] and as
upper bound the Golic bound [8]. These bounds are functions of the entropy HZ(Q|)? z)- To
evaluate the bounds we need the distributions P(Q;|l) and pl()_() t|Qi) as given by (4). Whereas
the discrete distribution P(Q;|l) can be estimated with high accuracy on large databases, the
cdf pl()?t|Ql-) is unknown. We approximate the cdf pl()?t|Qi) by our model (1) leading to
pdfs ﬁl()in). The entities defined in (4) are approximated in 2 steps. In the first step

expressions as —f pl()?l| Q) log pl()? 1090 dX ! are approximated by
—f pl()?l| Q) log (P, ()?”Qi) d)?t. In the second step we apply the Monte Carlo Method [9]:

- - - - N i, _ =
— [ (Xl Q1) log (Bi(X11Q)) dXe ~ — %, 20" log Bi(XT'1Q:) (5)

using the Ny samples of chunks X I'n=1,..., Ng of length / assigned to the segment Q.
The quality of the approximation (5) increases with increasing number of samples. Taking
into account the general inequality — [ p(Z)logp(Z2)dZ < — [ p(Z)logf(Z)dZ, which holds

for any distributions p(Z), f(Z), we can relate H I(Q |)? z) to its approximation H l(Q |)? 1)5

- N - - - ~ -
H QX)) = =X, 2 P(Q:ID [ p(Qi1X) log p, (Q:1X,) dX; < H,(Q|X)) (6)
¥ o\ — N 7 ~ % g . = 2\ — _ PiXi]e)PQilD)
go|X) =-X.°P;|D Q;1X) logp,(0Q;1X,) dX,; p,(0;1X,) = -

l( | l) i=1 il fpl( i1 X0) gpz( il l) l Pl( il 1) ZliszlP(Qi”)ﬁl(XﬂQi)
Due to the approximations made, the bounds are approximations and depend on the quality of
the acoustic model. Yet from (6) we conclude, that the Fano bound determined with
H,(Q|X,) is still an exact lower bound.

2.2 The MgC-Distances
Our basic idea is to exchange the original chunks of the speech database by simulated chunks,
which have exact the distribution p; ()_()1|Ql-, l) of the acoustic model. We call such chunks

'Model generated Chunks (MgCs)'. No we evaluate the SER and the entropy HZ(Q|)? l) for a
MgCs generated database and for the original speech database. Thus we get 2 values for the

SER and 2 values the entropy HI(Q|)? l). We define as MgC-SER-distance the difference of

the two SERs and the MgC-Hl(Q |)? l)- distance the difference of the two entropies Hl(Ql)? l).
We hypothesize, that if the MgC-distances are zero, the optimal acoustic model is found,
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delivering the minimal SER and Hl(Q|)? l). Vice versa we hypothesize, that large distances
hint for non optimal models.

Now we describe in detail, how we construct the MgC based database. We start with the
labels of the speech database. We extract the sequence of segments together with the related
length of chunks. Then for each segment the aligned chunk is exchanged by an MgC. To
simulate an MgC of length / for a segment O; we use a mode generator and a multivariate
Gaussian generator. According to (1) the mode generator has to generate a number £ in the
range [1,...K;] with probabilities c;; Given the number &, a multivariate Gaussian generator

generates a vector of the dimension of the chunk with the probability N()? 5 Hiki I_/)l) For both
generators matlab” code is available. As the length of chunks can be very long, the resulting
high dimension of such chunks may be no longer tractable in practice. To solve this problem
we use the decomposition method described in [12], where a high dimensional multivariate
Gaussian is decomposed by low dimensional Gaussians:

N()?l; Hik ‘71) = Ny (X5 ik Vipr) Tloma Niy (X [ Xy -1, oo X5 i g tjo—1, Vi) (7
For long chunks, where no HCMs are trained, we use an n-gram approach [12]. According to
(7) we have to generate only vectors from the low dimensional Gaussian distribution Ny,
given by the conditional means y; j ;j,—1 and by the conditional covariance matrices V;j,,. By
concatenating the / simulated vectors we construct a complete chunk, which is an MgC. The
sequence of MgCs generated according to the labels of the speech database constructs the
MgC based database, whose chunks have the distribution as given by the HCMs.

3 Experimental Evaluation of HCMs and HMMs
3.1 Experimental Set Up

The experimental set up is the same as described in [12]. We use the same Spanish and
French speech databases from the QUAERO project [13] and the same CART to generate the
labels for segments. We use 16 MFCCs per frame. The feature vectors are constructed in two
steps. First a super vector of dimension 144 is build concatenating the 4 right and left MFCC
vectors inclusive the central MFCC vector. Using LDA the super vector is reduced to a 24
dimensional feature vector.

Speech #chunks #chunks length / of chunks & P(1|Q)in %

database for training for test 1 2 3 4 5 =6
Spanish 7721815 570 492 263 | 625 6.4 1.9 0.8 22
French 27164564 | 4095502 | 9268 | 316 | 20.6 9.4 4.1 7.6

Table 1 - amount of data and length distribution P(1|Q) of the chunks

Speech # of segments [ & H,(Q)[bit]

database Ny 1 2 3 4 5 >6
Spanish 604 8,80 8,92 8.82 8,53 8,06 321
French 598 8,77 8,75 8,72 8,62 8,54 7,63

Table 2 - number of segments and entropy H;(Q)

The size of the databases and the length distribution of the chunks are shown in table 1. The
French chunks are longer than those of Spanish. As shown in the next sections this difference
has great impact on the properties of the acoustic models. In the following we use as log-
function the base 2. Thus the entropies defined in (4) have as units biz. Table 2 shows the
entropies H;(Q) evaluated by the distribution P(Q,|l). For equal distributed segments H;(Q)
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would take the value log, Ny (e.g. log> 604=9.25 [bif]). The HCMs are trained on the speech
databases using the unified EM algorithm [4] exchanging as samples the feature vectors by
chunks. The HMMs are trained on the speech database and on the MgC based database.

3.2 Error Rates and Shannon's Conditional Entropy
The segment error rates are evaluated using (3). Shannon's conditional entropy is evaluated

using approximations as described in section 2.1. In the following we denote by H (Q|)? 1) the
approximated version. Due to the data available (see table 1) HCMs for Spanish are trained
till /,=3 and for French till /y=5. To compare HMMs with HCMs we compare models with
the same number of modes (NoM). For HCMs the NoM is defined by the sum of all modes of
the HCMs trained. Thus the French HCMs have for the same value of NoM less modes per
HCM than the Spanish ones. Further the HCMs are trained in such a manner, that the number
of modes of each HCM for given / is equal i.e. each HCM(/) has NoM// modes. The HMMs
evaluated on the MgC test database are trained on the training part of the MgC database.

HCMs HMMs
length / of chunks length / of chunks
1203|1231 2]3]1]2]3
NoM SER H(Q|X)) SER H(Q|X)

1812(82.9|73.1{62.6|6.72|6.13|5.91|82.5|72.3/69.4|7.64|7.59|9.50
3624(79.8|71.4/60.5|6,71|5.89|5.51(81.5|71.0{68.3|7.32|6.95|8.59
10872|77.5|/70.5(59.6(6.23|5.75|5.35|79.9|69.5|67.6|6.89|6.21|7.44
21744176.2170.0/59.4|5.99|5.77|5.34|79.2|68.7|66.76.66 | 5.92|7.10
43488(75.6169.9|59.0|5.83|5.73|5.33(78.7|68.6|66.9|6.50|5.70|6.90

Table 3 - SER and H(Q |)_() 1) for HCMs and HMMs for the Spanish test database

HCM length / of Chunks
NoM [ 1 | 2 [ 3] a]ls|1]2]3]a]s
SER H(Q|X))

2990 69.6 | 57.0| 53.0| 52.1| 52.9| 5.50|4.38 | 4.18 | 4.14| 4.25
5980 66.6 | 55.2| 52.0| 51.0| 52.3| 5.38|4.31|4.24 | 4.25| 4.27
20000| 63.0| 54.3| 51.6| 51.0| 52.1| 4.77|4.15|4.12|4.13| 431

HMM length / of Chunks
NoM | 1 | 2 ]3] 4a]s|1]2[3]a]s
SER H(Q|X))

2990( 70.5| 61.0| 61.7| 65.1| 68.7| 6.01|5.90| 7.30 | 9.33 | 11.97
5980 67.0| 57.2| 59.1| 64.5| 70.9| 5.36|5.07 | 6.60 | 9.35|13.33
20000 65.1| 55.8| 58.4| 64.5| 71.1| 4.90|4.56|6.03 | 8.62 |12.33

Table 4 - SER and H(Q |)? ) for HCMs and HMMs for French test database

Table 3 (Spanish) and 4 (French) show the SERs and approximated H (Q|)? 1) for HCMs and
HMMs achieved for different NoM. In general the values of SERs and H (Q|)? 1) drop with
increasing /. Further for />2 the HCMs perform always better than the HMMs. The good
performance of the HMMs for /=2 for Spanish can be explained that most chunks have the
length /=2 and the HMM concentrates most of its modes to these chunks. This is not the case
for French.
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3.3 MgC-Distances

For simulating model generated chunks (MgCs) we have to distinguish between two models
characterized by their number of modes (NoMs). The first model concerns the model used to
generate the MgCs. The modes from this model are called chunk modes. The second model
concerns the model used to perform maximum likelihood classification (3). The modes from
this model are called model modes. The first model is always a HCM, as this model delivers

the lowest values for SER and H (Q|)? 1)- The second model is either a HCM or a HMM. To
evaluate the impact of the NoMs we investigate two cases: the 'case of match', where the
number of NoMs of the chunk modes and number of NoMs of the model modes are equal,
The 'case of mismatch', where the values of the two kinds of NoMs are different.

NoM length | of Chunks
chunk |model | 1 ‘ 2 ‘ 3 1 ’ 2 ‘ 3
modes | modes SER [%] H(Q|}_()1)[bit]

1812 1812(80.0/61.7|42.9|5.40|3.62|2.27
3624 | 3624]|73.6/59.643.1(4.72|3.44|2.30
3624| 1812|82.0/63.9/46.3(5.81|{4.10|2.95
10872|10872|71.0|59.4|44.0|4.43|3.43|2.35
21744|21744(69.7|59.2|44.2|14.31|3.41|2.38
21744|110872|76.2|63.1|46.2(5.16|3.78|2.56
21744| 3624(79.9|63.1/46.6|5.97(3.93|2.73
21744| 1812(83.2|65.1/48.3|6.34(4.37|3.19
43 488|143 488(67.7|159.3|44.6|4.16|3.42|2.41

Table 5 - SER and H(Q |f 1) Spanish HCMs

NoM length / of Chunks
feature |model | 1 ‘ 2 | 3 1 ‘ 2 | 3
modes | modes SER [%] H(Q|71)[bit]

1812 1812)84.8/69.8|65.7|6.04|4.72|5.18
10872|10872|80.9|66.7|64.9(5.33|4.37|5.04
21744121744180.6|67.3|66.3|5.51|4.41|5.10

Table 6 - SER and H(Q |)_() 1) of MgC based Spanish test database;
HMMs trained on MgC based Spanish training database

NoM length | of Chunks
feature|model | 1 | 2 | 3 | a | s | 1] 2]3]a]s
modes | modes SER [%] H(Qﬁl)[bit]

2990| 2990|59.2|36.3|29.9(28.7(29.2(3.32|1.78|1.43|1.37|1.41
5980| 5980|54.0|36.2|31.2(30.2(30.7(2.94|1.77|1.49|1.46|1.51
20000|20000(51.8|37.6|32.8|32.0|31.4|2.81|1.86|1.61|1.61|1.65

Table 7 - SER and H(Q |)? 1) French HCMs for MgC based test database

We first regard the match case. As expected, the values of SER and H (Q|)?l) drop with
increasing NoMs (see table 5-7). Comparing these tables with the tables 3 and 4 for the same
NoM of model modes we can determine the MgC-distances. The MgC-distances are larger for
[>1 than for /=1. This result can be explained, that for the case /=1, the chunk is a single
feature vector and no statistic dependencies between feature vectors has to be modeled. This
is in contrast to the case />1, where statistic dependencies have to be modelled.
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NoM length I of Chunks
featuremodel1‘2|3|4‘5 1‘2‘3'4‘5
modes | modes MgC-SER [%] MgC-H(Q|Yl) [bit]
2990| 2990(10.4|20.7|23.1(23.4|23.7(2.18|2.60|2.75|2.77 | 2.84
5980| 5980(12.6/19.0|20.8(20.8|21.6(2.44|2.54|2.75|2.79|2.76
20000(20000(|11.2|16.7|18.8|19.0(20.7|1.96|2.29|2.51|2.52|2.66

Table 8 - MgC-distances for the French database

As seen in table 8, the MgC-distances drop with increasing NoMs in general. For /=1 we see
that the MgC-distances increase first and drops for larger NoMs. This behavior can also be
observed for Spanish for /=1,2. For larger NoM we expect, that the distances drop further
continuously. If a convergence to zero can be achieved at all, is still an open question. Due to
the values for SER and H(Q|X,) for increasing NoM shown in table 8, the NoMs must be very
large to achieve small distances. To yield reliable models very large databases are needed.

Regarding the miss match case we see on table 5 a large decrease in the values of SER and the

H (Q|)? 1) with increasing NoMs. Comparing this decrease of SER and the H (Q|)? 1) of table 3
and 4 for increasing NoMs, we see that this descrease is much bigger for the MgCs. This
difference in behavior indicates that the chunks have not a multimodal Gaussian distribution
with tied covariance matrices.

3.4 Bounds of Error Rates

Figure 1 shows a Fano-Golic plot for the bounds of the SERs for Spanish for speech derived
chunks and MgCs. The MgCs are simulated for the case, that the NoMs for both models have
the same value (NoM=43.488). The values of SER and H(Q |)? 1) are taken from table 3 and 5.
In the case of MgCs, Shannon's entropy H (Q|)?l) is exact, as the distribution p, ()? l|Ql-, l) is
known. In the case of speech derived chunks, H (Q|)z' 1) 1s approximated. Due to (6) the exact
H (Q|)? 1) is smaller. This means, that the points shown in figure 1 on the left side have to be
shifted down to an unknown amount. Thus also for the approximated entropy the Fano bound
is still a correct lower bound, but more conservative, whereas the upper bound is only an
approximation. As the SERs of the MgCs are smaller, it seems that the MgC based error rates
could be taken as a much tighter upper bound than the Golic bound. If this hypothesis is
correct, has to be explored theoretically.
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Figure 1 - Bounds of SER for Spanish with 43.488 modes; left plot: speech chunks - right plot: MgCs

260



4 Acknowledgement

We would like to thank Christian Plahl and Hermann Ney from the RWTH Aachen
University, Germany for kindly providing the labeled QUAERO databases.

5 Conclusion

Using GMM based HMMs and HCMs we have shown that in general HCMs perform better
than HMMs for equal number of modes, especially for longer chunks. A new evaluation
paradigm delivering a distance - the MgC- distance - has been presented for evaluating the
quality of approximation between the acoustic model and the exact distribution. The
experiments have shown that HCMs and HMMs show quite large distances. It seems that
GMMs with very large number of modes are needed to achieve low distances.
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