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Abstract: To investigate whether the impact of phoneme merging on recognition

rate can be predicted, different measures to quantify the relationship between two

phonemes a and b have been compared: (1) the functional load of their opposition,

(2) the bigram type preservation, (3) their information radius, (4) their distance

within an information gain tree induced from a distinctive feature matrix, and (5)

the symmetric Kullback-Leibler divergence. For each of 26 different phoneme pairs

we trained a speech recognition system where the phoneme pair was merged. We

then compaired the new accuracy rates and the measures to find out if there was

any correlation. The results did not always meet our expectations and raised further

questions.

1 Introduction

Large lexicon speech recognition systems use an acoustic model based on subword units, usu-

ally a phoneme set. The selection of phonemes to be modelled is crucial for the performance

of the system. It should be able to represent and distinguish the sound units contrastive in a

language but still allow variation in speech. Merging phonemes reduces the number of subword

unit models needed to be trained and stored, solving the data sparseness problem and ideally

also reducing the number of confusable phonemes, but increases the number of homophones

and with it the ambiguity [1, 2]. In this paper we want to investigate whether the impact of

phoneme merging on recognition rate can be predicted, comparing several kinds of quantified

relationships between phonemes.

2 Data

2.1 Data for HMM training

The speech recognition system was created using the HMM toolkit (HTK) [3]. We used the

Verbmobil 1 (VM1) speech corpus, separated into training, development and test corpus as

suggested by BAS [4]. The phonemes were modelled with left-to-right topology HMMs, diph-

thongs using four states, long vowels using three and all other sounds using two states. MFCC,

Energy, first and second derivation were represented by a multivariate Gaussian distribution.

2.2 Data for phoneme system quantification

For examining relations of phoneme pairs within a phonological system we used parts of the

VM1 corpus comprising 285 280 word tokens with their canonical transcriptions that in total

consist of 1 635 406 phoneme tokens.
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3 Method

3.1 Quantification of relations in phoneme systems

We utilised five measures to represent the relation between phonemes a and b in canoncial

word-segmented transcriptions: (1) the functional load of their opposition, (2) the bigram type

preservation after merging a and b, (3) their information radius, (4) their distance within an

information gain tree induced by a distinctive feature matrix, and (5) the symmetric Kullback-

Leibler Divergence.

3.1.1 Functional Load

In general the functional load FL of a phonological opposition of the phonemes a and b is

related to the number of contrasts this opposition is responsible for in a language L. The basic

information theoretic definition adopted here was first introduced in [5]:

FL(a,b) =
H(L)−H(La=b)

H(L)
. (1)

H(L) is the entropy of a language L. La=b denotes a language lacking an opposition of a and b.

FL(a,b) thus stands for the relative amount of information loss resulting from such a merging,

reflecting the increase of homophones.

L was given by all transcription types of our data, thus by a pronunciation dictionary.

Hypothesis H1 A high functional load of the opposition of the phonemes a and b is an indi-

cator of decreasing recognition performance, since a high degree of ambiguity is added to the

data after merging a and b.

3.1.2 Bigram type preservation

By calculating the functional load on the basis of pronunciation dictionaries it is not possible

to make use of disambiguating context. However, this context, which is available in connected

speech, weakens the disturbing impact of homophony resulting from phoneme merging.

Thus to get a more realistic notion of the effect of merging phonemes a and b than provided

by the functional load, we measured the preservation of transcription word bigram types BP as

follows:

BP(a,b) =
Ta=b

T
, (2)

T is the number of word bigram types in our data, and Ta=b ≤ T is the number after merging

phonemes a and b.

Hypothesis H2 As for the functional load again low bigram type preservation, thus low

BP(a,b) values, are expected to indicate decreasing recognition performance due to increas-

ing ambiguity.
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3.1.3 Information radius

To account for the distributional distance between phonemes a and b, we used the information

radius metrics. This measure is already established on various linguistic levels, e.g. to quantify

semantic simliarity [6] or the similarity of theater plays [7]. It quantifies the difference between

the phoneme probability distribution p in the context of a as opposed to q in the context of b as

follows:

IR(p,q) = D(p||
p+q

2
)+D(q||

p+q

2
), where (3)

D(p||q) = ∑
i

pi log2

pi

qi
. (4)

In our approach the context has been defined as the phoneme history in a phoneme bigram

model. The relative entropy D(p||q) gives the number of bits additionally needed to encode

events i, for which the distribution p holds, by a code based on q. IR(p,q) is a symmetric

version of this divergence measure and thus a proper distance metrics.

Hypothesis H3 Opposed to a high functional load, a high information radius of two phonemes

indicates that their merging only has a low effect on ambiguity, which qualifies them to be good

merging candidates.

3.1.4 Information gain tree distance

From the distinctive feature matrix given by Chomsky [8] we induced an information gain tree

classifier similar to the C4.5 algorithm by [9]. The feature matrix thus was used as training

data for this tree classifier for phoneme categories, and the phonemes are represented as paths

through this tree to a leaf carrying the phoneme label. The tree representation of a phoneme

set has three advantages compared to the matrix representation. First, the tree is created by

recursive partititoning of the phonemes with respect to the feature which contributes the highest

information gain about the phoneme identity. This allows the features to be ordered by their

contribution in phoneme identification: the higher a feature’s contribution, the higher its posi-

tion within the tree. Second, by this splitting criterion, features that do not contribute anything

to phoneme distinction, are discharded, which is helpful, if one works only on a phoneme sub-

set. Third, due to the termination criterion, that blocks further tree splitting in case no further

division of the data is possible, potential insufficiencies of a feature system are depicted as

multiple phoneme labels ending at the same leaf.

Since the information gain tree was designed to represent the phoneme system exhaustively in

an interpretable way in contrast to the C4.5 algorithm no pruning was carried out, and distinctive

features were not allowed to be used more than once during tree construction.

The tree distance between two phonemes finally was defined as the number of non-final nodes

to be passed on the shortest path from one phoneme to the other.

Hypothesis H4 Since the acoustic similarity of two phonemes is to some extent reflected by

their closeness in the tree, a low distance of two phonemes should indicate a relatively good

compatibility of the related acoustic models for speech recognition, which would qualify them

to be merged.
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3.1.5 Symmetric Kullback-Leibler Divergence

To measure the similarity between phonemes a and b on signal level, the symmetric Kullback-

Leibler divergence (KL) [10] was used:

DKL(a,b) =
1

2
tr[(∑a

−∑b
)(∑

−1

b
−∑

−1

a
)]+

1

2
tr[(∑

−1

a
+∑

−1

b
)δδ

T ] (5)

∑a and ∑b are covariance matrices of the phonemes a and b, δ is the difference in the means

and tr the matrix trace function. In short, this measure compares the form and size of two

probability density functions.

In the speech recognition system we used for the experiments, diagonal variance vectors were

used, so the KL was calculated on another HMM model, trained on the same data as the baseline

system but where the states were defined using covariance matrices.

Hypothesis H5 A smaller KL indicates greater similarity between two models, and thus a

greater confusability. Assuming that two phonemes with a smaller KL are more often mis-

matched, merging them should have a smaller impact on speech recognition rate.

To summarise, we expect that phonemes a and b with

1. low functional load,

2. high bigram type preservation,

3. high information radius,

4. low information tree distance, and

5. low symmetric Kullback-Leibler divergence

are good candidates for merging, since their acoustic models are expected to be close, and their

merging should increase ambiguity only to a small extent.

3.2 Speech recogniser training and evaluation

The baseline system included 47 phonemes, of which 5 represent non-speech voices as laughter,

breathing or background noise, as listed in table 1. The accuracy rate of the baseline system

was 69.44. A pair of consonants or vowels was picked to merge and the new speech recognition

system was trained with 46 phonemes. We did not merge a consonant with a vowel.

Vowels e, 2:, y:, OY, E:, 9, Y, aU, o:,

u:, O, U, e:, aI, E, i:, @, a:, a,

I, 6

Consonants p, S, N, j, h, x, g, k, b, z, r, C,

?, l, f, v, d, m, s, t, n

Other sounds <usb>, <nib>, <la:>, <br:>, <p:>

Table 1 - Phonemes used in the baseline system.
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paare Acc KL iRad functionalLoad nbg itree

2: 9 69.47 1883410.79 1.0783860 -1.251396e-04 1.0000 2

Y y: 69.42 1363217.07 0.7483130 5.736440e-16 1.0000 2

u: U 69.35 1693574.93 1.3002731 1.099554e-04 1.0000 2

E: E 69.29 1784305.47 1.5056551 -1.151733e-04 0.9998 2

Y I 69.24 1333615.65 0.9648393 -4.725220e-05 0.9999 4

y: i: 69.23 4473329.68 0.6242079 3.785046e-04 0.9994 4

a: a 69.20 1503416.63 1.2532038 1.477526e-03 0.9993 2

o: U 69.17 1777095.58 1.0230573 -1.018413e-04 1.0000 5

N n 69.17 1435198.65 0.6401513 3.615079e-04 1.0000 9

k g 69.04 78259.46 1.1946101 1.371553e-03 0.9997 2

z s 68.97 179217.27 1.4006399 4.030575e-04 0.9999 2

p k 68.96 104196.39 0.5859276 8.278275e-05 1.0000 9

I e: 68.95 1575669.53 1.0781021 8.532797e-04 0.9998 6

r l 68.83 3053839.46 1.0000000 -2.065118e-15 1.0000 8

h x 68.81 1957869.21 1.9596388 -3.327135e-15 1.0000 8

k h 68.74 410403.89 1.4918656 1.729387e-04 0.9998 7

b v 68.59 272070.26 1.2759282 1.388183e-03 0.9994 7

f h 68.56 1106008.13 1.1170951 1.577609e-03 0.9994 9

m n 68.52 1232643.01 0.5891027 1.041849e-02 0.9842 4

l v 68.38 2813286.06 0.9876505 1.014802e-03 0.9994 4

v f 68.33 913065.62 0.7554164 2.305747e-03 0.9981 2

d t 68.28 28734.19 1.1907792 5.849359e-04 0.9997 2

s S 68.26 1262620.93 1.0084304 6.027621e-04 0.9997 10

l k 68.21 2748864.04 0.7052246 2.226014e-04 0.9999 8

s f 67.95 714748.74 0.9178399 1.630141e-03 0.9970 5

Table 2 - Results

4 Results

We retrained the baseline recognition system 25 times, each time with a different phoneme pair

merged and compared the resulting accuracy rates with the calculated measures. The results are

shown in Table 2.

First, we investigated if there was correlation between the accuracy of the new systems and the

measures. The results are visualized in 1

1. Functional load showed negative correlation with recognition accuracy with p=0.12, ten-

tatively confirming our hypothesis.

2. Bigram type preservation correlated positively with recognition accuracy, although with

p=0.18 only tentatively confirming our hypothesis.

3. Information radius and recognition accuracy showed positive correlation with p=0.59,

tentatively confirming our hypothesis.

4. The hypothesis about lower information tree distance indicating smaller declination of

accuracy was confirmed by our data showing negative correlation (-0.3450) with p≤0.1.

5. The last hypothesis was not confirmed, as the Kullback-Leibler divergence and recogni-

tion accuracy showed positive correlation (0.1895) with p=0.36.

To be able to compare the strength of influence of each measure parameter we applied the linear

regression model on z-normalized data. Here we got results contradicting our hypothesis not

251



0.000 0.004 0.008

6
8
.0

6
8
.5

6
9
.0

6
9
.5

Functional Load

A
c
c

0.985 0.990 0.995 1.000

6
8
.0

6
8
.5

6
9
.0

6
9
.5

Bigram type preservation

0.6 1.0 1.4 1.8

6
8
.0

6
8
.5

6
9
.0

6
9
.5

Information Radius

2 4 6 8 10

6
8
.0

6
8
.5

6
9
.0

6
9
.5

information tree distance

A
c
c

0e+00 2e+06 4e+06

6
8
.0

6
8
.5

6
9
.0

6
9
.5

KL

Figure 1 - Illustration of dependency between the Accuracy and the phoneme distances

only for the KL but also for information radius and bigram type preservation. The functional

load turned out to have the strongest influence. By further analysis with linear regression model

and stepwise linear regression, we came to the conclusion that only the functional load and

information tree distance predict the impact of phoneme merging on accuracy.

5 Discussion

Using five different measures to quantify phoneme distances, we tried to find out if it is possi-

ble to predict the impact of merging a phoneme pair on the accuracy of a speech recognition

system.

The functional load of a phonological opposition of phonemes a and b is related to the number

of contrasts that this opposition is responsible for in a language. The bigram type preservation

is similar to the functional load but also takes the word context into account. The information

radius accounts for the distributional differences of a and b with respect to their phoneme con-

texts. These three measures are based on lexical data. The information gain tree is based on the

phonological knowledge of the language, and on a distinctive features matrix. The symmetric

Kullback-Leibler divergence measures the similarity between phonemes on the signal level.

Only the functional load and information gain tree distance turned out to be able to predict the

impact of phoneme merging on accuracy. This was a bit surprising, since the additional infor-

mation of context did not seem to be helpful. The bad performance of KL could be reasoned

by the fact that it has been calculated on a different model. Testing the impact of merging on

the model the KL was calculated on could answer this question. But if KL would predict the

accuracy change better on another model, it would mean that for different HMM state mod-
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els, different phoneme sets should be used. Because the information gain tree could in some

degree predict the impact of merging phonemes, we can conclude that overall knowledge of

the phoneme system of the language is important and should be investigated carefully before

setting up a speech recognition system for a new language.
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