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Abstract. In this paper, a system for text independent speaker identification was
evaluated under different coding conditions over limited speech data. The
identification experiments were performed on the UASR (Unified Approach for
Speech Synthesis and Recognition) system with two different configurations.
Performance evaluations over different feature sets, number of Gaussians per model,
as well as amount of training data were performed in order to select an appropriate
configuration for speech coding effects demonstration. The initial results did not
appear suitable for practical application and further improvements were achieved
with model compensation by adaptation on different coders. In this case, significant
improvements were observed even with limited amount of speech data with similar
identification rates as for clean speech. In case of large speech data mismatch or low
bit-rate coded speech, model training on coded speech was performed to further
improve speaker identification.

1 Introduction

Beside its linguistic content, speech carries also unique information about the speaker,
regarding anatomy (pitch and vocal tract resonances) and characteristic speaking manner
(accent, thythm, intonation style, pronunciation pattern, vocabulary etc.)[1]. These unique
characteristics can be used in security systems as biometrical features for speaker recognition.

There are two possible applications of speaker recognition: speaker verification and speaker
identification. Verification is used to confirm the claimed speaker identity based on his voice
sample, while identification is the process of recognizing a speaker from a given database and
deciding about positive or negative identification. If the person is required to speak a
previously known utterance (prompt) during enrollment and recognition phase, the system is
considered text-dependent, otherwise text-independent [2].

Speaker identification can be used in two operational modes: "open-set", where the speaker is
part of the general population and "closed-set", where the speaker is identified as part of the
existing speaker database. The main performance measure is the speaker identification rate,
defined as the percentage of correct identifications averaged across all speakers in the
database [3].

Speaker identification systems are usually based on Gaussian Mixture Models (GMM) and
on the Universal Background Model (UBM) approach where the used features are the Mel-
frequency cepstral coefficients (MFCC). For each speaker, a GMM model is created using the
available training data. Speaker-dependent Gaussian components can represent general
acoustic classes that reflect speaker-dependent vocal tract shapes and can model arbitrary
densities [4].

Two factors significantly affect the performance of speaker identification systems: training
and testing conditions mismatch and limited amount of available speech data. Differences in
acoustic environment (noise, reverberation), technical recording conditions (transmission
channel, microphone), as well as within-speaker variation (health, mood, aging) significantly
affect identification rate [5]. Several methods have been developed to enhance the robustness
of speaker identification systems for given acoustic environment and technical conditions [1].
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They can be grouped into the following categories: feature compensation [6], model
compensation [7] or re-scoring techniques.

Today, the Internet is the most popular and used medium for distributing information in
various forms: texts, images, on-line and off-line audio and video content. With the global
spread of Internet and of multimedia technology, an increasing number of audio signals —
which are coded by some audio or speech coders, transmitted on the Internet or stored as
multimedia files — is available. There is an increasing greater need of using speech and
speaker recognition over multimedia content available on the Internet in various recognition
tasks, as IVR services over VoIP, in mobile services, etc.

The authors in [5] investigate the effect of audio coding in speaker identification and
verification in matched and mismatched testing and training conditions using popular audio
coding algorithms on a system based on Gaussian mixture models. They reported slight
decrease of performance in the case without sample rate change and significant loss when the
sample rate was changed during audio coding. The degradation of recognition performance as
reported for low bit-rate audio and speech coders is difficult to model and conventional noise
canceling techniques as such as spectral subtraction, cepstral mean subtraction and RASTA,
cannot be applied. For instance, the effect of GSM coding in the cepstral domain leads to a
spreading and displacing of the means of the Gaussians [8]. The accuracy performance can be
improved by either retraining of the speakers' models or using conventional adaptations
methods in mostly cases. However, in order to perform any of these approaches, a large
number of appropriately processed training/adaptation sentences to represent particular
environmental or channel model influences should be provided [9].

In this paper, a system for text independent speaker identification was evaluated under
different coding conditions over limited speech data. The identification experiments are
performed on the UASR (Unified Approach for Speech Synthesis and Recognition) system
with two different experimental setups. Performance evaluation over different feature sets,
number of Gaussians per model, as well as the amount of training data were performed in
order to choose a configuration for speech coding effects demonstration. Adaptation and
matched training were also performed in order to assess whether further improvements are
possible in the case of coded speech.

2 Influence of coding and model adaptation

2.1 Effects of coding

Speech signals are usually compressed by using lossy algorithms, which remove redundant
information from the original signal, introducing distortion and reducing the size for
transmission or storage. This has little effects on the perceptual quality, while it significantly
deteriorates the accuracy of the speaker identification/verification system. Since the goal of
speech coders is to maintain intelligibility of phonetic information, it is not clear how much
speaker-dependent information is removed or degraded.

From the analysis presented in [10] it can be seen that the coding-decoding distortion can be
modeled as a Gaussian density function. Based on empirical observations and clean and coded
speech signals comparisons in this study, it can be suggested that the cepstral coefficient in
frame ¢ of the original signal S7 ,, can be represented as:

t,n»o

S .=Si ,+D, (1)
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the S7 is the cepstral coefficient corresponding to the coded speech signal; D, is the distortion
caused by the coding-decoding process with probability density function:

fo,(D,)=N (un, =) ()
where N:

N (w;, %) 3)

is a Gaussian distribution with a mean g and variance 2. Hence, the coding-decoding
distortion is modeled as additive process in the cepstral domain, which implies the
introduction of additive correction terms in the mean x and variance 2, independent from the
phonetic class and from the output probability densities. Additive correction in the mean and
variance parameters has been already successfully applied in the context of speaker adaptation
[11]. Here compensation depends on the phonetic class and requires larger amount of
adaptation data, which is the main issue in model adaptation. These observations justify the
usage of conventional adaptation algorithms like MAP for speaker model adaptation in the
case of coded speech.

2.2 MAP based coding compensation

Maximum a posteriori (MAP) [11] is a method for acoustic model adaptation which in the
case of speaker recognition systems is used as an alternative for speaker model creation by
adapting UBM on small speaker data. Although there is a risk of smearing the distinctive
speaker's spectral characteristics, adaptation can be used as a model compensation technique
also in case of mismatched channel conditions. In [12] an approach is presented where a
channel independent model is transformed into a set of channel dependent models using the
mapping parameters in the feature domain.

The MAP adaptation updates the Hidden Markov Model (HMM) parameters by joining
known information (the old parameters) with the statistics derived from the adaptation data
using data-dependent weighting coefficient. The data dependency is designed to weight the
statistics with higher population towards new parameters and the statistics with lower
population towards the original parameters. The new mean and covariance (4) for the distri-
bution j presents weighted sum of the old and the new statistics:

n J ~ pu

A n. ~
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The data-dependency of the weighting coefficients is realized by the count of the adaptation
data nj and the relevance factors p, and ps. Their values mark the points where the new
parameter has the same weight as the old one. Higher values of p give more weight to the
prior information, the old parameters. The main problem with the MAP adaptation is that it is
an unconstrained method and updates therefore only those parameters for which observations
exist. It requires a relatively large amount of adaptation data in order to be effective for
sparsely occupied Gaussian distributions.

3 Experimental setup

3.1 The identification system

The used identification system is based on a maximum-likelihood classifier. For a reference
group of N speakers S={1/,2,..., N} represented by models 1;, A2, ..., An, the objective is to
find the model with the maximum posterior probability for the given utterance feature vector
sequence, X ={X,X,,..., X, } using Bayes decision rule:
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S=arg max P, (N |X)=arg max P(X[1) P, ()

1<k<N I<k<N p(X) )

where Pr(Zk) is the prior probability for speaker model A, p(X) is the prior probability for the
utterance feature vector sequence X and P(X|4x) is the likelihood of feature vector sequence X
to correspond to the model Ak. Assuming equal speaker prior probability, the terms
Pr(Zr)=1/N and p(X) are constant for all speakers and can be omitted. Using logarithms and
the assumed independence between the observations, the decision rule becomes:

T
S=arg max Y log p(% i) (6)

I<k<N ;=]
where p(X,|)\,) is the output probability for X, to match speaker model .

The used identification system was implemented by modified UASR (Unified Approach for
Speech Synthesis and Recognition) framework. Basically, the system uses arc-emission
HMMs with single Gaussian density per arc and an arbitrary topology. The structure is built
by iterative training process by means of state splitting from an initial HMM models [13].

For the purpose of speaker identification it was used in two different experimental
configurations. In the first one, individual speakers were modeled by 3-state HMMs, in the
second one with single state HMMs (GMM). The speaker models are built on clean and coded
speech by state splitting, effectively increasing the Gaussians number exponentially on power
two of the split iteration (after split 1 there are two, after split 2 - four and so on).

During the feature extraction process, the clean and coded-decoded speech signals, with
sampling frequency of 16 kHz and 16 bits resolution, were divided in 32 ms wide frames with
a shift of 10 ms and processed with a Hamming window. The band from 300 to 8000 Hz was
covered with 31 Mel DFT filters and at the output of each channel the log of the energy was
computed. The obtained feature vectors and theirs delta values were standardized to a mean of
zero and a standard deviation of one.

In several experiments, feature extraction process was combined with Principal Component
Analysis (PCA). The effectiveness of PCA in pattern recognition lies in its ability to
de-correlate feature parameters and relegate most of the random structures to trailing
components while extracting systematic patterns to leading ones. It is assumed that PCA
could aid the robustness in the case of speaker identification over coded speech.

3.2 Databases and speaker modeling

The used speech database consisted of studio recorded sequences with Microtech Gefell
M930 microphone, processed and formatted with 16 kHz and 16 bit PCM quality. Twenty
speakers (11 male, 9 female) participated in single, one hour sessions, producing on average
20 min speech material per person. The larger training set consisted of approximately 70
sentences (~14 min) and the test set of 30 sentences (~6 min) per speaker. Limited training
(2,5 min) and test sets (25 sec) per speaker were also prepared.

The speaker modeling was performed under two different experimental setups. In the first, for
each speaker, HMM models (3 states) were used along with silence (3 states) and Universal
Background Model (UBM) with 6 states. In this case, UBM was used in "open-set" speaker
identification for the detection of unknown speakers (imposter model), however in closed-set
speaker identification systems there is no need for a UBM since the individual speaker GMMs
are sufficient to carry out the identification process. In the second setup, single state models
(GMMs) were used for speaker modeling without the UBM and silence model.
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The models were trained with different number of Gaussian density distributions: 1, 2, 4, 8,
16, 32 and 64 per state. Mel-Frequency Cepstral Coefficients (MFCC), Linear Predictive
Coefficients (LPC) and Melfilter (MEL) features in combination with Principal Component
Analysis (PCA).

4 Identification experiments on UASR

Performance evaluation over different types of features, number of Gaussians per state, as
well as the amount of training data were performed in order to choose a suitable configuration
to demonstrate the effects of speech coding. The first set of experiments were carried out on a
HMM based identification system with 3 states per speaker model (and silence) and 6 states
for UBM, using MFCCs, covariance matrices, closed speaker set with large (noted as
EXP 1-1) and small (EXP 1-2) amount of speaker data.

The best identification results in both cases (large and small amount of data) were achieved
with 16 Gaussians per state, indicating that there is a lower limit for the number of mixture
components to model individual speakers [4].

For the larger training and test data the highest achieved accuracy was 92.1% and for the
limited speech amount 75.0% (s. Table 1), indicating that this setup is not appropriate in cases
when limited speech data is available. There were also increased confusions between UBM
and the speaker models due to the limited amount of training data for reliable UBM training.

In the second set of experiments GMM speaker models were used, without silence and UBM
models, with MFCC features and only variances, on closed speaker set for large (EXP 2-1)
and limited (EXP 2-2) speech data. The silence model was omitted and silence periods were
not labeled, assuming that with the increase of mixture numbers silence will be accordingly
represented within the speaker models. The identification rates improved (99.8% - large and
100% - limited training set) as a result of the reduced number of models and the exclusion of
UBM.

Table 1. Speaker identification rate (%) over number of state splits

Experiment/Model 0 1 2 3 4 5 6
EXP 1-1 90.1 913 919 919 921 919 091.1
EXP 1-2 714 732 732 750 750 714 714
EXP 2-1 96.8 953 887 995 998 99.8 100
EXP 2-2 97.6 97.6 81.0 929 100 100 100

It was also observed that increasing the number of Gaussian mixtures does not necessary
result in better identification (it was higher for models with 1 and 16 mixtures than for the
model with 4). The reason is, although the model with one mixture is roughly approximated in
the feature space, that the distance between the mean values is sufficiently large for good
speaker identification, which was not the case with models with 4 mixtures.
This configuration was used for identification experiments across different feature extraction
methods (MFCC+PCA, MEL+PCA, LPC+PCA) (Table 2) and different speech coders
(Table 3).

Table 2. Speaker identification rate (%) over different features and number of state splits

Experiment/Model 0 1 2 3 4 5 6
MFCC+PCA 929 905 786 881 952 97.6 976
MEL+PCA 90.5 90.5 548 881 100 97.6 97.6
LPC+PCA 90.5 88.1 833 833 929 976 952
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4.1 Coder types used in M-C training and adaptation

For the purpose of speaker identification over coded speech, nine different coders were
chosen by their bit-rate coverage of the coding standards, their common use in multimedia
and mobile applications as well as their availability and licensing. The speech coders:
ADPCM, G.722, G.726, GSM, LPC-10 and the general audio coders: MP2, Vorbis,
Real 14.4, WMA1 and WMA2. FFMPEG (open source) [14] and SOX (open source) [15]
were used as a general coding-decoding engines.

4.2 Mismatched data experiments

Identification rate evaluation was performed over different coder types and bit-rates using the
GMM based system (as in EXP 2-2), with different feature set combinations (Table 3). In all
experiments the used speakers' GMM models were created after the fourth split, which means
16 Gaussians per model.

Table 3. Speaker identification rate (%) over different coders and feature sets

Type | CODER Bit Ratey MFCC MECC MFCQ+PCA ME.LJ'rPCA LPCfPCA
kbps | (large data) | (limited) (limited) (limited) (limited)

General | Uncoded | 256 100.00 100.00 95.20 100.00 92.90
General | ADPCM | 32 66.00 83.30 90.50 64.30 19.00
Voice | G722 64 83.30 85.70 95.20 71.40 21.40
Voice | G726 64 78.60 83.30 90.50 64.30 26.60
Voice | G726 32 35.70 23.80 11.90 19.00 14.30
Voice GSM 13.2 14.30 7.10 4.80 14.30 19.00
General | MP2 8 23.80 21.40 14.30 16.70 4.80
General | MP2 96 90.50 88.10 90.50 78.60 9.50
General | Vorbis 45 50.00 50.00 47.60 73.80 9.50
General | Vorbis | 500 100.00 100.00 95.20 100.00 92.90
Voice |Reall4.4| 14.4 54.80 59.50 66.70 28.60 38.10
Voice | LPC-10 | 24 19.00 11.90 7.10 21.40 16.70
General WMAV1| 32 97.60 97.60 83.30 92.90 23.80
General WMAV1| 64 90.50 90.50 90.50 90.50 14.30
General | WMAV2| 32 100.00 97.60 88.10 95.20 28.60
General WMAV2| 64 97.60 95.20 95.20 100.00 19.00
Average 66.78 66.33 64.76 62.07 23.83

There is a significant decrease in the identification rate for the low bit-rate speech coders
(GSM, LPC-10, MP2 - 8 kbps and Real 14.4). GMM models with 16 mixtures and MFCC
features, alone and combined with PCA, produced the best results (average 66.33% and
64.76%) in coding conditions on a limited amount of data. However, these results are not
suitable for practical applications and further improvement should be achieved using feature
or model compensation techniques.

4.3 Adapted model experiments

Although MAP adaptation as a GMM model compensation method might introduce loss of
speaker discriminative information, the trained models were adapted on a specific coder.
The difference in speaker identification rate was observed and compared with the baseline
model for the feature sets MFCC (Figure 1a) and MFCC combined with PCA (Figure 1b).

In both cases, significant improvements and satisfying identification rates were observed
(particularly for Vorbis with 45 kbps), except in the cases in which the speech data mismatch
was too large (GSM, MP2 8 kbps, LPC-10, etc.). There is a larger relative improvement in the
case of MFCC alone than in the case of MFCC+PCA after adaptation for the low-bit rate
coders except for MP 2 with 8 kbps.
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Figure 1. Speaker identification rate for clean and adapted model, a) (MFCC) and b) (MFCC+PCA)

4.4 Matched data experiments

For the low speech quality coders, matched training was performed in order to see whether it
is possible to reach appropriate identification performance comparable between clean and
adapted speaker models. The results presented for MFCC (Table 4) and MFCC+PCA
(Table 5) exhibit similar behavior as in the case with clean speech. There is a lower limit of
number of Gaussians per model that are sufficient for speaker modeling.

Table 4. Speaker identification rate (%) in case of matched training for MFCC features

GMM MFCC /split 0 1 2 3 4 5 6
Clean 97.6 976 810 929 100 100 100
GSM 88.1 881 81.0 905 97.6 976 100
MP2 8Kbps 8.7 881 619 667 905 881 952
LPC-10 90.5 881 833 881 929 952 952
Real 144 952 929 833 78.6 857 90.5 95.2

Table 5. Speaker identification rate (%) in case of matched training for MFCC+PCA features

GMM MFCC+PCA /split 0 1 2 3 4 5 6
Clean 929 905 786 8.1 952 976 97.6
GSM 88.1 881 81.0 929 952 976 976
MP2 8Kbps 857 857 476 857 952 952 952
LPC-10 929 929 881 929 952 952 952
Real 144 857 857 762 833 905 929 90.5

For the MFCC+PCA feature set, after fourth split, for the most of the used coders, no further
improvements could be observed while increasing the number for Gaussians. More mixtures
per model are needed to maximize the speaker identification rate in the case of MFCC
features.

5 Conclusions

In this paper we investigated the performance of text-independent speaker identification over
speaker models trained on clean speech, models adapted and models trained on coded speech.
Even with limited amount of speech data, a similar identification accuracy as for clean speech
could be achieved using adaptation for high quality coders. In the case of low bit-rate coded
speech, significant improvements in speaker identification rate could be achieved by means of
training in matched conditions, for example for GSM coded speech with: a) MFCCs, on clean
models: 7.1%, on adapted models: 59.5%, and on matched trained models: 97.6%; and
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b) MFCCs+PCA on clean models: 4.8%, on adapted models: 35.7%, and on matched trained
models: 92.9%. Future work will be focused on using feature-based combined with
model-based compensation, as well as including better UBM modeling and testing the system
on standardized speakers databases.
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