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Abstract: This paper deals with the development of a classifier to distinguish be-

tween positive and negative feedback from the user in human-machine-interaction.

We calculate prosodic features from the user’s utterances and feed it to an Echo

State Network, a dynamic classifier that is able to learn temporal dependencies im-

plicitly. The data were recorded in a test scenario from German and Japanese test

subjects, once in natural speech and once in an artificial “language” that uses only

the syllable “na”. The test subjects had to give feedback to a simulation of the robot

Flobi and were instructed to behave like interacting with a child. The implemented

Echo State Network proved to be able to learn to classify the feedback of a sin-

gle person into the two categories “positive” and “negative” and could generalize

to a certain extent. We experience a high range of different feedback in the data,

intra-culturally as well as inter-culturally. However, it can be shown that a classi-

fier trained on German data works significantly better on German data than on the

Japanese, indicating that cultural differences exist. Analyzing different feature sub-

sets, we found out that using Mel-Frequency Cepstral Coefficients as features yield

a better classification rate than using prosodic features (like pitch and intensity)

alone.

1 Introduction

Feedback from the user is an important information for a successful interaction, in human-

human as well as in human-machine-interaction. In the same way children learn through the

feedback of their caregivers, it would be desirable that e.g. robots could use feedback informa-

tion to adjust their behavior.

While the content of an utterance is defined by the lexical information, the prosody is supposed

to convey the emotional state of the interaction partner. This additional information is usually

not exploited by speech recognition systems, although lexical information alone are not always

complete. E.g. in sarcastic or in informal speech questions might not be marked by grammatical

constructs but only through intonation. Prosody is especially helpful if lexical information is

not available, e.g. in a foreign language.

A study from Fernald [4] showed that preverbal infants can distinguish between approval and

prohibition using prosodic information in infant-directed speech. In contrast to adult-directed

speech infant-directed speech shows differences in fundamental frequency, intensity and dura-

tion of the utterance. This phenomenon can be found across several languages, including Ger-

man and Japanese [5]. In the above study [4] the English infants could classify infant-directed

speech in several unfamiliar languages, including German, but were not able to classify infant-

directed Japanese speech.

While preverbal infants rely on prosody alone, they tend to prefer lexical content as their vo-

cabulary grows [6]. Around the age of ten children start to prefer prosodic contents again, if
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lexical and prosodic contents are discrepant [7]. When facing utterances in a foreign language,

children of all age are able to use prosody to classify the included emotion [11].

Using data recorded from German as well as from Japanese test subjects we aim at a cross-

cultural analysis.

In [2], Breazeal and Aryananda differentiated between four categories of prosodic intention in

robot-directed speech (their robot was earlier shown to evoke infant-directed speech): praise,

prohibition, attention and soothing. They were able to recognize utterances of these categories

using the pitch contour and some static features of the signal like mean pitch, intensity and dura-

tion. Their algorithm works decently well on the caregivers’ utterances as well as on utterances

selected because of the affective strength.

In our research we distinguish two categories, deciding whether the human is content with the

robot’s behavior (positive feedback) or not (negative feedback). These are important for the

robot to decide whether his action was correct. A qualitative analysis of our data indicated that

positive feedback often matches with the categories praise and attention (higher mean pitch and

higher pitch change), while the negative feedback has lower mean pitch and less pitch change

like prohibition and comfort. But there existed high variance; the results were not consistent

with all test subjects (note, that we did not carry out a preselection like in [2]). As a classifier

we, therefore, used an Echo State Network (ESN), a type of a Recurrent Neural Network. This

dynamic classifier has similar properties like Hidden Markov Models (HMMs) and has also

been shown to be able to take the role of HMMs in speech recognition tasks [12].

Our research questions are the following:

1. Is it possible to build a classifier to distinguish positive and negative feedback in a speaker-

dependent / speaker-independent way?

2. Is there a difference in how Japanese and German people use prosody to convey feedback?

2 Data Recording

Figure 1: A Japanese test subject gives feedback to

Flobi during data recording.

Feedback could serve as an important clue

for robots to learn the correct names of ob-

jects. We used a robot simulation of Flobi

[10] as an interaction partner. Flobi was nam-

ing objects presented as an image on a com-

puter screen and the human should respond

to Flobi whether he was correct or wrong.

The scenario is shown in Figure 1. The

robot’s utterances have been recorded from

an Asian woman in German and from a Ger-

man woman in Japanese. By using non-

native speakers the scenario should appear

more plausible, as if the robot learned words

from a foreign language. The test subjects

were instructed to behave as if they were cor-

recting a child. While some test subjects used

clearly motherese, others answered in a less

affective way.

Overall we had 32 test subjects, 22 German (11 female, 11 male) and 10 Japanese (2 female, 8

male). For each person we carried out two runs containing 30 objects each. While in one of the

runs they were allowed to say whatever they wanted (even multiple sentences), in the second
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run they were limited to use one syllable (“na”) and only change the prosody to convey the

positive or negative meaning. The idea was to force the usage of prosody through the absence

of lexical information. Another advantage of this method is that we get data that are independent

of linguistic characteristics of a specific language.

The data were recorded with an headset at a sample rate of 48000 Hz.

3 Methods

In the following we describe the methods we used for speech extraction and classification.

All values mentioned were calculated on windows of 4096 samples of the signal (i.e. approx.

85ms). Subsequent windows have an overlap of 75%.

3.1 Speech Extraction

To extract the training data, i.e. to detect speech in the signal, we used in addition to the pitch

value another value, which is in literature often called the periodicity [13]. This value can be

interpreted as the proportion of harmonics in the signal; the more distinct the maximum of the

cepstrum of the speech snippet is, the higher is the periodicity value and the more likely a voiced

speech segment is present.

Looking for a high periodicity and a pitch value in a plausible range (50 Hz to 500 Hz for

human speech) we can cut out speech automatically from the signal.

There still might be gaps in the signal, e.g. because consonants have a low periodicity, so

we used opening and closing algorithms (usually used in image processing to get rid of single

noise pixels) to throw away short as speech classified snippets inside noise or as noise classified

snippets inside a speech segment.

As there is no clear threshold, which periodicity value has to be reached, we conducted an

Expectation Maximization Algorithm to enhance the results: The features of the signal are

plotted in a 2-dimensional (3-dimensional) feature space (using maximum and variance of the

cepstrum (and logarithmic energy) as features). In this space two clusters are searched (speech

and non-speech) and each sample in the signal is relabeled according to which cluster it belongs

to. Then again outliers in the signal are removed using the opening and closing algorithms.

In the following analysis we only included utterances extracted by this algorithm; false posi-

tives (extracted segments that do not contain speech) were removed manually.

3.2 Feature Extraction

Prosody is usually defined as a variation of the fundamental frequency (pitch), the intensity and

the duration of an utterance [1]. We used a dynamic classifier, which is able to model durational

characteristics, so that we do not need to include them explicitly.

Our feature vector consists of the log energy and pitch of the signal, the mean, variance and

maximum amplitude of the cepstrum, and 12 mel-frequency cepstral coefficients, as well as the

first and second derivative of all features.

3.3 Classification Using Echo State Networks

ESNs have been proposed by Herbert Jaeger in [9]. In contrast to general recurrent neural

networks all connections, except those to the output neurons, are chosen randomly and fixed.

This so called reservoir creates non-linear random projections of the input vector and serves as

a short term memory. There is no need to propagate the error back through time while learning,

which reduces the computational effort.
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Figure 2: The information flow of our classifier: The input vector is consecutively fed into the reservoir,

the internal state and then the readout is calculated. The output neurons are fed back into the network,

and are also combined to produce a single output.

As depicted in Figure 2 the next state xn+1 of the reservoir is calculated as a sum of the next

input un+1, the current reservoir state xn and the current output vector yn, all multiplied with

the according weight matrices [9]:

xn+1 = f (Win
·un+1 +Wres

·xn +W f b
·yn)

For f , the activation function, we used the hyperbolic tangent. Note, that the weight matri-

ces Win for the input, Wres for the reservoir and W f b for feedback connections are randomly

initialized and fixed; only the output weights Wout are adapted during training.

In the reservoir we used around 100 to 200 neurons and set the connectivities for the weight

matrices to 0.1 each, i.e. 90% of the connection weights are 0. This sparse connectivity allows

the reservoir to develop more sophisticated and non-linear dynamics [9].

The input vector is 51-dimensional – one dimension for each feature mentioned in Section 3.2.

We chose the following 4 output neurons:

1. A neuron that is 1 for positive, −1 for negative feedback and 0 otherwise.

2. A neuron to react on positive feedback with the value 1 and 0 otherwise.

3. A neuron to react in the same way to negative feedback.

4. A neuron to detect speech in general, i.e. to be 1 if there is speech and 0 if there isn’t.

The 1st neuron represents the final output we want to produce. However, training the network

to directly learn the output of this neuron turned out to be difficult – the output neuron preferred

to react only with a positive or with a negative amplitude; it was not able to learn the differences

of positive and negative speech. Introducing three other neurons, which all concentrate on one

aspect we want to detect, allowed the 1st neuron to produce the desired output. We combined

the outputs of the single neurons for a more stable output:

combined output =
neuronspeech · (neuronposneg +neuronpos −neuronneg)

2

We used the C++ library aureservoir [8] as an implementation of our ESN. Due to the high

sample rate and the large feature vectors the included batch training algorithm was not applica-

ble. We, therefore, extended the library with an online training algorithm as proposed by Dai et

al. [3]. The idea is to use the error between the reservoir output and the desired output for the

weight update:

yn+1 = xn+1 ·W
out
n
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en+1 = ȳn+1 −yn+1

Wout
n+1 = Wout

n +α · (xn+1)
T
· en+1 +β · (xn)

T
· en

where ȳ is the desired output, y the reservoir output and e the error. α and β are called the learn-

ing and the momentum gain respectively; they control how fast the weights adapt depending on

the error of this time step and the time step before.

4 Results

To evaluate the performance of our ESN framework, we trained several networks on exclusive

subsets of utterances. We first conducted speaker-dependent cross-validation, then tested gen-

eralization abilities. Afterwards we analyzed which features yield the best results and finally

examined cultural dependencies.

4.1 Speaker-dependent Cross-validation
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Figure 3: Percentage of correct classification for different

thresholds.

For each test subject and for both con-

ditions (“na” and natural) we trained

three networks (each on two thirds of

the data) and then tested on the remain-

ing third. Summing up the results we

get the performance for this condition.

We tested with different thresholds for

the network output amplitude. With a

higher threshold a higher mean ampli-

tude is needed as network output; if the

threshold is not reached, the utterance

is rejected. Therefore, we get higher ac-

curacy at the cost of a higher rejection

rate. The results, summed up over all

test subjects, can be seen in Figure 3.

When splitting the data into groups

(defined by gender, culture and the type of feedback) the performances are spread as shown

in Figure 4. The best performance is reached for the German females in the “na” condition with

81%. There is no significance in the differences between the performances of the natural and the

“na” feedback, but we see a tendency that the classification on the “na” condition works better

for female, while for male the natural condition yields better results. The Japanese in general

perform slightly worse, but especially the Japanese female results have to be rated carefully, as

there were considerably less data.

4.2 Looking at Generalization Capabilities

If the way in which the test subjects gave “na” feedback corresponds to the way they tend to

give feedback in natural speech, it is expected that the “na” trained networks also work for the

natural feedback data to some extend.

To test this, we used the three “na” trained networks per person to classify the natural feedback

from this person and chose the best performing networks each. (Because of the randomly

initiated reservoir of the network, it is expected that some might work better than others.) The

overall classification accuracy is then 67.4%. The standard deviation is quite high, as for some

subjects the classification did not work at all (yielding a classification rate around 50%). But
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for two thirds of the test subjects the accuracy is higher than 60% and nearly half of the subjects

perform even better than 70%. See Table 1 for the detailed results.
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Figure 4: Percentage of correct classification in the different

groups (with a fixed threshold of 0.3).

It can be observed for some

people with very distinctive “na”

feedback that we get better per-

formance on the natural data clas-

sification when using “na” for

training than when using the nat-

ural data for training. This leads

to the assumption that an opti-

mized network, trained only with

the carefully chosen most distinc-

tive utterances could improve the

performances also for the evalua-

tion in 4.1.

4.3 Feature Subset Analysis

Leaving out part of the features

yields the results shown in Figure 5. Surprisingly, a combination of all features works only

slightly better than MFCC features alone. Leaving out the MFCCs causes a significant drop in

the overall performance, so they actually appear to be useful for the classification of prosody in

this case.

The variance of the performance over several runs of the classifier is low, but the rejection rate

varies strongly; it is most stable when all features are used.

4.4 Cross-cultural analysis
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Figure 5: Performance of different features subsets with accu-

racy and rejection rate, averaged over 3 runs with all data.

To account for cross-cultural dif-

ferences we tested the networks

trained on German data on other

Germans and on Japanese data

and vice versa. If there are dif-

ferences in the way German and

Japanese give feedback, we ex-

pect the German nets to perform

better on other German data than

on Japanese and the Japanese nets

to perform better on Japanese au-

dio data.

The first assumption turns out to

be true, as the German net per-

forms better on German data for

the “na” as well for as for the nat-

ural condition (see Figure 6). The

difference is significant, but not that obvious, as also intra-cultural differences between the data

are high. In general, there seem to exist very diverse strategies of giving feedback, even among

people with the same cultural background.

For the Japanese networks a better performance on the same culture can only be seen in the

natural data, but significance cannot be found here.
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Figure 6: Results for ESNs applied to data of the same and of the other culture, on the left hand for “na”,

on the right hand for natural feedback.

5 Discussion

Table 1: Classification of natural data

with “na” trained networks: Percentages

of subjects that reach an accuracy higher

than 50 / 60 / 70 / 80 %.

Mean performance 67%

Standard deviation 13.9

better than 50% 92%

better than 60% 67%

better than 70% 46%

better than 80% 21%

Our approach worked for “na” utterances as well as

for utterances in natural language. From male persons

the natural feedback could be recognized even better,

while from females the “na” condition was easier to

classify. Although not significant, these differences fit

the experimenter’s observations that most female per-

sons easily used prosody in “na” feedback, while some

males had difficulties to convey their intent without us-

ing words.

While some test subjects produced speech including

high prosody, others relied more on lexical information

using adult-directed speech. This could be prevented

in further studies by developing the experimental de-

sign more carefully. For Flobi it has not been proved that he triggers infant-directed speech, so

he might have been perceived by the participants in different ways. It might also be an idea for

improvement to choose a more child-like voice for the robot’s utterances.

The usage of prosody in feedback appears to be also highly situation dependent. Concerning

the scenario, a task without any usage of lexical information might be better suited to enforce

more emotional responses. Also a continuous task where the user’s response directly influences

the robot’s next action could yield stronger prosody.

As the generalization properties seem to depend on the quality of the training data, training

with data from actual infant-directed speech might be useful and could make it possible to also

classify cases with more subtle prosody.

MFCCs are the standard approach for speech recognition, but are also often included addi-

tionally to the prosodic features for emotion recognition tasks. That MFCCs alone proved to

work so well might be, because the MFCCs contain the whole speech signal, which can not be

reconstructed through the prosodic features alone.

Looking back at our research questions we can conclude that differences between German and

Japanese users seem to exist. A network trained on German data works significantly better on

German audio data than on Japanese audio data, but a significant difference cannot be found the

other way round. This could result from the fact that the prosody in Japanese was often very

indistinct, at least in the explored group. The reason for that might be cultural influences, as a

clear “No” is rarely used in Japanese everyday language.
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Furthermore, it is possible to recognize positive and negative feedback from utterances in a

speaker-dependent way. To some extent also speaker-independent networks would be possible

to implement; but we observe very diverse strategies of giving feedback intra-culturally as well

as inter-culturally. This indicated that a general solution is difficult to achieve and a speaker-

dependent model for classification would be the better choice.
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