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Abstract: We show how the audio-visual discrimination performance of promi-

nent from non-prominent words based on an SVM classifier varies from speaker

to speaker. We collected data in an experiment where users were interacting via

speech in a small game, designed as a Wizard-of-Oz experiment, with a com-

puter. Following misunderstandings of one single word of the system, users were

instructed to correct this word using prosodic cues only. Hence we obtain a dataset

which contains the same word with normal and with high prominence. Overall

we recorded 8 speakers. The analysis shows that there is a large variation from

speaker to speaker in respect to which feature can successfully be used to discrimi-

nate prominent from non-prominent words depending on the prominence signaling

strategy applied by the speaker. In particular for speakers who mainly use duration

to signal prominence we see an increase in performance from combining acoustic

and visual information. The audio-visual classification accuracies we obtain vary

from 66%−91% correct from the most difficult to the easiest speaker.

1 Introduction

Current spoken dialog systems don’t evaluate the prosodic characteristics of speech even though

it is well known that prosodic cues play a very important role in human communication [21].

Nevertheless, quite a few research systems included such prosodic cues in a human-machine

dialog [19, 22, 15]. In general the inclusion of prosodic cues is quite difficult as they show

not only a large variability from speaker to speaker but are also difficult to extract from the

speech signal. The inclusion of visual information might be a route to alleviate these problems.

Information on the movements of the speaker’s mouth and face notably improves the accuracies

of automatic speech recognition, particular in difficult situations [20, 11, 16, 24]. Humans are

also able to use such visual information to extract prosodic cues [9, 18, 2, 23, 1]. Studies

quantifying these visual prosodic cues have shown that they are mainly manifested in larger jaw

opening, lip spreading and protrusion and to some extend to head movements [8, 7].

In [17] it was shown that speakers use prosodic cues to highlight corrections in a dialog with

a machine and that these can be detected using prosodic cues. We extended this idea in [10]

to the audio-visual discrimination of prominent from non-prominent words. In particular we

showed that the performance can be improved by visual features extracted from the speaker’s

face without the use of additional visual markers. As visual features we used image transforma-

tions calculated on the mouth region of the speaker. For this paper we extended the dataset and

investigate how the discrimination of prominent from non-prominent words varies from speaker

to speaker.

In the next section an overview on the recording of the data will be given. After that Section 3

describes the different features extracted from the acoustic and visual channel. Following this
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Section 4 will present the results of the classification experiments. In the last section we will

discuss the results.

2 Dataset

For the recording of the data the subjects interacted via speech in a Wizard of Oz experiment

with a computer in a small game where they would move tiles to uncover a cartoon. With this

playful setting we expected to obtain more natural speech, in particular regarding the prosody.

This game yielded utterances of the form ’put green in B one’. Occasionally, a misunderstand-

ing of one word of the sequence was triggered and the corresponding word highlighted, verbally

and visually. Verbal feedback was based on the FESTIVAL speech synthesis system [3]. The

subjects were told to repeat in these cases the phrase as they would do with a human, i. e. em-

phasizing the previously misunderstood word. However, they were not allowed to deviate from

the sentence grammar by e. g. beginning with ’No’. This was expected to create a narrow focus

condition (in contrast to the broad focus condition of the original utterance) and thereby making

the corrected word highly prominent.

In total 8 subjects, 4 females and 4 males, three speaking British English as their sole native

language, three being bilingual British English/German, one speaking American English as her

sole native language and one being bilingual American English/German were recorded. The

audio signal was originally sampled at 48 kHz and later downsampled to 16 kHz. For the video

images a CCD camera with a resolution of 1280× 1024 pixel and a frame rate of 25 Hz was

used.

Due to the strong resemblance of the recorded speech in grammar and vocabulary to that of the

Grid Corpus [6] a speech recognition system trained on that corpus could be used to perform a

forced alignment on the acquired data. For the alignment HTK and a combination of RASTA-

PLP and spectro-temporal HIST features [12] was used as this gave upon visual inspection

better results then either of the feature sets alone or MFCC features. In particular, we first

performed a speaker adaptation with a Maximum Likelihood Linear Regression (MLLR) step

followed by a Maxium A-Posteriori (MAP) step, both using HTK [25].

For further processing those turns where the original utterance and a correction were available

were selected. This yielded overall 1300 turn pairs (original utterance + correction), i. e. on

average ≈ 160 turn pairs per speaker). From these the word which was emphasized in the

correction was determined. Then it was extracted as well in the original utterance as in the

correction. This yields a dataset with each individual word taken from a broad and a narrow

focus condition. An analysis of acoustic features related to word prominence in [10] showed

that the words in the narrow focus condition were notably more prominent than in the broad

focus condition .

3 Features

In the following experiments the features described in Table 1 which have previously been

proposed to capture word prominence were used. From these features (except for duration) the

mean value for each word was calculated and used in the subsequent analysis. The beginning

and end of the word was taken from the forced alignment.

For the visual modality the openCV library [4] was applied to first detect the face in each image

frame and then determine the nose position. As the nose moves only slightly relative to the skull

during articulation it yields information on the rigid head movements and hence also on the

current position of the mouth region. For determining the mouth region from the images a fixed

and for all speakers identical offset from the nose was used and also the size of the mouth region
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Acoustic

dur duration of the word

en energy relative to the mean of the ut-

terance

f0 mean fundamental frequency (ex-

tracted according to [14, 13])

Visual

y nose y position relative to the mean

of the utterance

d, dd first and second derivative

Table 1 - A description of the different features.

Figure 1 - Image from recording after

cropping to face region, nose detection,

downsampling and highlighting of the

mouth region.

was kept identical. After downsampling by a factor of 2 this yields an image of 80×80 pixels

of the mouth region (compare Figure 1). On these images either a two-dimensional Fast Fourier

Transform (FFT) or Discrete Cosine Transform (DCT) was calculated. In case of the FFT and

DCT out of the 6400 coefficients per image the 50 with the highest energy were selected. This

was done by calculating for each speaker separately the mean energy of all 6400 coefficients

on a randomly selected subset of 10% of the data. As FFT coefficients are complex we only

used their magnitude in all steps. Consequently we obtain for FFT and DCT 50 coefficients per

frame to capture the mouth shape. All visual features, i. e. for the nose and the mouth shape,

were smoothed along the time axis with a 5-th order FIR lowpass filter with a cut-off frequency

of 5 Hz. Furthermore, first and second derivatives (∆ and ∆∆) were calculated.

4 Results

To discriminate prominent from non-prominent words a Support Vector Machine (SVM) with

a Radial Basis Function Kernel was trained using LibSVM [5]. For each feature combination

a grid search for C, the penalty parameter of the error term, and γ , the variance scaling factor

of the basis function, was performed using the whole dataset. Prior to the grid search the data

was normalized to the range [−1 . . .1]. With the found optimal parameters an SVM was trained

on 75% of the data and tested on the remaining 25%. Hereby a 30 fold cross validation in

which the data set was always split such that an identical number of elements is taken from both

classes was run. To establish the 30 sets a sampling with replacement strategy was applied. This

process was performed individually for each speaker.

When looking on the results in Figure 2 we can see a large variation in performance for the dif-

ferent features and also for the different speakers. Overall duration and fundamental frequency

perform identical with a 65% correct rate and energy inferior with 59% correct. Yet the vari-

ation from speaker to speaker for all features is very large. For duration the speaker yielding

the best results is speaker F with 76% correct. The two speaker with the worst results, speaker

A and C, obtain only 53% and 57% correct, respectively. However, for fundamental frequency

speaker C is actually the one yielding with 83% correct the best results. Also speaker A is with

69% correct above average. When looking also on the results for the energy feature one can see

that speaker A seems to use mainly fundamental frequency to signal prominence. The results

suggest that most speakers use either duration or fundamental frequency to signal prominence

and not both at the time.

Combining the different acoustic features improves the performance. The combination of en-

ergy and duration yields 70% correct and adding also fundamental frequency increases perfor-
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Figure 2 - Discrimination accuracies for different acoustic feature combinations. The grey bars in the

background visualizes the average over all speakers for a given feature or feature combination. The

short horizontal lines indicate the standard deviation of the 30 fold cross validation. See Table 1 for an

explanation of the abbreviations.

mance to 77% correct. For the combination of all three features the inter speaker variation is

reduced as in this case the SVM is able to yield good results if they use duration or fundamental

frequency.

In Figure 3 the results using the different visual features are displayed. As we can see on

average FFT and DCT perform similar, yet with 66% correct DCT is somewhat better than FFT

with 64% correct. With a range of 56%−89% correct for FFT the performance varies a lot from

speaker to speaker. When looking on the nose y position we can see that it is for most speakers

non-informative. However, with 70% correct speaker F clearly stands out. This speaker also

yields the best results for FFT and DCT.

When comparing the results obtained by acoustic and visual features one can see that in par-

ticular for speakers which use duration to signal prominence it can also be identified well from

the visual channel. Yet it seems that it is not only the duration or a combination of duration and

energy which is extracted from the visual channel as for speaker F, G and H the results using the

visual channel only are better than those for duration or the combination of energy and duration.

The corresponding results are depicted in Table 2.

Table 2 - Classification rates in %.

speaker duration energy+duration DCT
F 76 85 86

G 66 68 72

H 62 61 65

Finally in Figure 4 the results we obtain when we combine the acoustic and the visual features

are depicted. Here we can see that when combining either energy and duration with FFT,

respectively DCT, or the combination of all acoustic features with FFT, respectively DCT we

can see for some speakers a significant increase in performance. As we can expect from the

previous results the results for speaker F and G improve from the combination of acoustic and

visual information (from 85% to 91% and from 70% to 77% correct for the combination of all
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Figure 3 - Discrimination accuracies for different visual feature combinations. The grey bars in the

background visualizes the average over all speakers for a given feature or feature combination. The

short horizontal lines indicate the standard deviation of the 30 fold cross validation. See Table 1 for an

explanation of the abbreviations.

acoustic features either without or with DCT features). Yet also the classification performance

for speaker A who, as we saw, mainly uses fundamental frequency, increases from the addition

of the visual channel (from 70% to 73% correct).

5 Conclusion

We collected via a small Wizard-of-Oz game with a computer data where subjects were uttering

words with normal and high prominence. During the game we made audio and video recordings.

We then extracted acoustic and visual features and trained an SVM classifier to discriminate the

normal from the highly prominent words. The results showed that the different speakers used

different strategies to indicate prominence, i. e. chiefly via duration or fundamental frequency.

One speaker also very consistently used head movements. We also saw that those speakers

where the visual discrimination results were best showed in the acoustic channel a preference

for duration. This is intuitive as changes during phonation, i. e. fundamental frequency, are

not visible. However, we also saw that for some speakers the visual channel provides more

information than the acoustic channel. In addition to the longer opening time of the mouth due

to an increase of segment duration this is most likely information on hyper-articulation, e. g.

wider opening of the mouth or a wider spreading of the lips [8]. In particular for these speakers

the inclusion of the visual channel increases the discrimination performance compared to the

audio channel alone. Next steps include the evaluation of the whole utterance instead of only

the prominent word to include e. g. hypo-articulation effects of the following words [8].
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Figure 4 - Discrimination accuracies for different acoustic and visual feature combinations. The grey

bars in the background visualizes the average over all speakers for a given feature or feature combi-

nation. The short horizontal lines indicate the standard deviation of the 30 fold cross validation. The

asterisk indicates audio-visual results which are statistically significantly better (α = 0.05) than the

corresponding audio only results. See Table 1 for an explanation of the abbreviations.
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