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Abstract: The Levenshtein distance is an established metric to represent phono-

logical distances between dialects. So far, this metric has usually been applied on

manually transcribed word lists. In this study we introduce several extensions of the

Levenshtein distance by incorporating probabilistic edit costs as well as temporal

alignment costs. We tested all variants for compliance with the axioms that within-

dialect utterance pairs are phonologically more similar than across-dialect ones. In

contrast to former studies we are not applying the metrics on preselected, prototypi-

cal word lists but on real connected speech data which was automatically segmented

and labeled. It turned out, that the transcription edit distances already performed

well in reflecting the difference between within- and across-dialect comparisons,

and that the adding of a temporal component rather weakens the performance of

the metrics.

1 Introduction

Comparing dialects manually is, unfortunately, very time consuming and relies solely on the

performance of the human expert. Therefore, automatic methods have been proposed to not only

increase the speed of the analysis, but, furthermore, to have an objective metric that produces

transparent and reproducible results.

The Levenshtein distance, i.e. the minimum number of edit operations to convert one tran-

scription into another, is a widely used metric for dialect comparison [1]. Kessler [2] applies

the Levenshtein distance to compare the distance between different Gaelic dialects, with mate-

rial from sites in Ireland, Scotland and the Isle of Man, with satisfactory results in clustering

those Gaelic dialects in their natural classes. He compares different metrics based on phone

string comparison and feature string comparison, but finds that the approach based on phone

strings has the best performance.

Nerbonne and Heeringa [3] apply the word length normalized Levenshtein distance on Dutch

dialects, where they use feature vectors to be able to express the closeness of two phones, like

“t” and “d”, where the naive Levenshtein distance would still result in the same distance as for

“a” and “d”. To account for the fact that in normalization for the average word length, missing

words would be penalized in an extensive way, they use the longer word for the normalization

of the distance.

Heeringa, Kleiweg, Gooskens, et al [4], furthermore, analyze the effects of n-grams on the

distance measure using both examples from Norwegian and German. They find that the n-

grams only mildly improve the result. Furthermore, they confirm that the methods based on

phones instead of feature vectors lead to better results.

The work just mentioned produces good results on the underlying data. As the distances are

measured on a small sample set of words from a word list and uttered by mostly only a few

prototypical speakers of a certain dialect area (exception is [4]), they might be biased by a)
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the manual transcription, b) the speaker themselves or c) the selection of words. We, there-

fore, wanted to explore the power of the metrics on automatically segmented and labeled (S&L)

data on a big set of speakers with connected speech, rather on a comparatively small word

lists, where the subjects do not necessarily speak a strong dialect. Additionally those methods

work only on the transcriptions. Through the availability of the speech recordings we wanted

to incorporate the available temporal aspect. Therefore we propose an addition to the basic

Levenshtein-distance based metrics in adding a temporal component. To account for phonolog-

ical similarity of phones we don’t choose expert-driven, theory-depended feature vectors, but a

probabilistic cost function reflecting co-occurrence frequencies of phone pairs.

2 Data

For the evaluation of the proposed metric, the corpus of Regional Variants of German (RVG)

was used [5]. The RVG corpus was recorded between 1995 and 2009 at the Institute of Pho-

netics and Speech Processing at the University of Munich and contains recordings of over 400

speakers from nine dialectal regions. We grouped this nine regions into four bigger dialectal

groups. Normally, Germany is divided in three different supergroups which are Low German

(Niederdeutsch), Central German (Mitteldeutsch) and Upper German (Oberdeutsch). Through

the transition area in the West Central German (Westmitteldeutsch) area, called “rheinischer

Fächer” and the homogeneous area of the East Low German (Ostmitteldeutsch) area [6], we

decided to not group the Central German dialects together and use four groups (group names

and abbreviations after the braces).

• Low Franconian (Niederfränkisch)
⎫

⎬

⎭

Low German (Niederdeutsch): LG• West Low German (Westniederdeutsch)

• East Low German (Ostniederdeutsch)

• West Central German (Westmitteldeutsch)
}

WCG

• East Central German (Ostmitteldeutsch)
}

ECG

• Alemannic (Alemannisch)
⎫

⎪

⎪

⎬

⎪

⎪

⎭

Upper German (Oberdeutsch): UG
• Bavarian (Bayerisch-Österreichisch)

• East Franconian (Ostfränkisch)

• South Franconian (Südfränkisch)

From the corpus we selected the read speech part, that comprises a set of sentences read by

multiple speakers. To rule out those speakers that are unlikely to have strong regional variation,

we did not take people into the analysis that classified themselves as speakers of the standard

German variety (“Hochdeutsch”).

3 Method

3.1 Utterance distance metrics

The speakers were compared pairwise for each input text. Five distances d∗(v,w,z) of the pho-

netic segmentations v and w of two speakers, who had to read the same text z have been calcu-

lated. Thereby, each phonetic segment vi (analogously w j) is defined by a label vl
i and a time

interval vt
i:

• vi =< vl
i,v

t
i >,

• w j =< wl
j,w

t
j >.
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All distances are based on transcription and/or temporal alignment, which is solved by dynamic

programming [7], minimizing the overall alignment costs. As described in more detail in the

next sections, the distances dn and dp are based on transcription alignment using a naive and

a probabilistic cost function respectively. dt is based on temporal alignment, and dnt and dpt

combine both alignment types.

3.1.1 Naive edit distance dn

The distance dn is based on the cost function cn that simply assigns cost 1 to each substitution,

insertion, and deletion. The costs are thus defined as:

• Substitution: cn(v
l
i,w

l
j) =

{

0 : equal(vl
i,w

l
j)

1 : else.

• Deletion: cn(v
l
i, ) = 1

• Insertion: cn( ,wl
j) = 1

To make dn independent of utterance length, we normalized it to the mean length of v and w.

3.1.2 Probabilistic edit distance dp

Following the PermA approach in [8] the probabilistic edit costs cp are defined in terms of

conditional probabilities reflecting symbol co-occurrences in the transcription data of our RVG

sub corpus. The costs are defined as follows:

• Substitution: cp(v
l
i,w

l
j) =

{

0 : equal(vl
i,w

l
j)

1−P(wl
j|v

l
i) : else.

• Deletion: cp(v
l
i, ) = 1−P( |vl

i)

• Insertion: cp( ,wl
j) = 1−P(wl

j| )

Smoothing of the conditional probabilities is achieved by weighting the co-occurrence count

increments within a triangular window of length 3 and size 1.

To avoid unsatisfying heuristics in cost assignment (see [9] for examples), insertion and dele-

tion operations are basically considered as substitutions involving the -symbol. Respective

co-occurrences are counted by -symbol padding and permutation in the shorter sequences in

the alignment training pairs. See [8] for details.

To fulfill the symmetry requirement of a distance metric, dp was calculated as the mean of

dp(v,w) and dp(w,v) each normalized with respect to the length of v and w respectively.

3.1.3 Temporal distance dt

Following [10] temporal costs are defined in terms of the overlap ratio of the segments’ time

intervals vt
i and wt

j:

ct(v
t
i,w

t
j) = 1−

ti j

vt
i +wt

j − ti j

The overlap ratio is visualized in Figure 1. ti j is the duration of the overlap of segments vi and

w j. The denominator gives the total duration from the start of the first occurring segment to the
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end of the second one. Thus the overlap ratio is 0 in case of no overlap yielding cost 1. In case

of perfect overlap the ratio is 1 yielding cost 0. In our approach deletions and insertions are

treated as calculating the overlap with segments of length 0, both resulting in an overlap ratio 0

(since ti j = 0) and, therefore, cost 1.

Figure 1 - Overlap ratio of time intervals ti and t j:
ti j

ti+t j−ti j
.

To remove the influence of speech pauses and utterance length on dt , the temporal distance was

calculated separately for each pair of corresponding words each time setting the temporal onset

of both words to 0. As for the previous distance metrics word length normalization was carried

out. Finally, the word-based normalized distances were averaged over the whole utterance.

3.1.4 Complex distances dnt and dpt

The distances dnt and dpt are based on the mean of the respective edit and the temporal cost

component, the naive edit costs for dnt and the probabilistic costs for dpt .

cnt(vi,w j) =
cn(v

l
i,w

l
j)+ ct(v

t
i,w

t
j)

2

cpt(vi,w j) =
cp(v

l
i,w

l
j)+ ct(v

t
i,w

t
j)

2

3.2 Dialect comparisons

By the alignment variants described above five distance values per speaker pair and text stimulus

were derived.

For the following axioms we need two definitions:

• Within-dialect distances WDx are all distances of speakers belonging to one dialect x, so

WDx = {d(x,x)}

• Across-dialect distances ADx are all distances of pairs where one speaker belongs to di-

alect x and one speaker to dialect y, so ADx{∀y 
= x : d(x,y)}

We formulated the following three axioms in order to test whether or not the metrics can be

used for dialect comparison:

Ax1 WDall < ADall

Ax2 ∀x : WDx < ADx (x belonging to the nine dialects listed in section 2)
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Ax3 ∀x : WDx < ADx (x belonging to the four dialect groups listed in section 2)

For Ax1, we evaluated the appropriateness of our measures by comparing the overall within-

dialect distances WDall with the across-dialect distances ADall of all dialects combined. The

trivial expectation that within-dialect distances are smaller than across-dialect distances should

be reflected by our distance metrics.

For testing the compliance to Ax2 we used the available assignment to dialects. As mentioned

before, there are nine dialects, so we made an overall of nine comparisons between the dialects,

where for each dialect the WDx were tested against the ADx of a certain dialect. Again WDx

should be significantly smaller than ADx.

For testing the compliance to Ax3 we grouped the dialects together to bigger groups as men-

tioned in 2 and repeated the evaluation from Ax2.

4 Results

4.1 Overall within- vs. across-dialect distance

The test against Ax1, which is the intuitive understanding that within-dialect distances are

smaller than across-dialect distances, we used a one-tailed Welch’s t-test, which resulted in a

highly significant distance difference in the expected direction for all 5 metrics (t(∞)> 8.5, p <

0.01).

4.2 Per dialect within- vs. across-dialect distances

The per dialect within- vs. across distance comparison for all five metrics resulted in the pattern

seen in table 1, where not only the significant differences are shown, but as well the tendencies

towards WDx < ADx or WDx > ADx. Especially the later case is an undesirable state and means

that based on the available data the metric is not able to reflect Ax2.

Table 1 - Overview of the number of cases where the criteria for Ax2 is met or not met that WDx

(within-dialect distances) is smaller than ADx (across dialect distances).

dddnnn

(naive)

dddnnnttt

(naive +

temporal)

dddppp

(prob)

dddpppttt

(prob +

temporal)

dddttt

(temporal)

Significant WDx < ADx 5 3 5 3 4

Insignificant WDx < ADx 1 2 1 2 2

Insignificant WDx > ADx 3 4 3 4 3

4.3 Per dialect group within- vs. across-group distances

The per dialect group pairwise within-group to across-group comparison resulted in highly

significant results for all five metrics and all groups (p < 0.01), based on a one-tailed Welch’s

t-test, except for the comparison for LG with WCG with dt (temporal costs). There the result is

still weakly significant (p < 0.1).
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5 Discussion

5.1 Overall within- vs. across-dialect distances

The within-dialect distances are significantly smaller than the across-dialect distances, which

shows that all cost functions produce results that go along with the intuitive understanding that

the difference of speech for speakers within a certain dialect are smaller, than for speakers across

dialects. This compliance to Ax1 we take as a first indicator for the examined distances to be

appropriate metrics for dialect comparison.

5.2 Per dialect within- vs. across-dialect distances

The per dialect within- vs. across-dialect distance comparison revealed, that the intuitive un-

derstanding that WDx is smaller than ADx does not hold true for all dialects. The metrics dn

(naive Levenshtein ) together with dp (distance based on conditional probabilities) produce the

best results. Adding the temporal component ct as described above does not only not improve

the results, but makes them worse. So for the temporal variant three cases are left where WDx

is smaller than ADx. The metric dt based on temporal costs alone works again better when

not combined with other cost functions. That the naive binary Levenshtein distance on phones

works better than more complicated cost functions, is in line with findings of [2, 4].

The possible problems with the data in general and the automated segmentation and labeling,

are discussed in greater detail in 5.4.

5.3 Per dialect group within- vs. across-group distances

In contrary to the original dialect assignment the per dialect group comparison of the within-

vs. across-distances shows the expected behavior, that WDx of a group is smaller, than ADx.

The fact that it does work for bigger groups, but not with the initial assignment, causes us to

assume there might be some dialectal regions which are more diverse than others or maybe the

effects have been to small to be significant in the evaluation of the initial dialect assignment.

5.4 Problems and further work

The partial violation of Ax2 might have four reasons.

First, the used data is not guaranteed to be very dialectally influenced, even though people

from many different regions were recorded and we did not regard the subjects indicating their

own dialect as standard German. It might be possible to further sort out people with only

weak regional influence, but such a selection is not trivial. When done by a single expert, the

data might be biased towards his opinions. So a set of experts or untrained personal might be

necessary.

Second, we needed to use read speech data in order to be able to align utterance pairs. Read

speech is very likely to be less influenced by regional variation, especially as the speakers where

not asked to produce very dialectal speech, which eliminated more dialectal differences. Again,

this could be solved by using data from speakers which are perceived as strong dialect speakers.

Third, unlike in the data used in previous studies, which used words that are supposed to have

strong local variations, the text that has been read in the RVG corpus constitutes connected

speech and, therefore, a large amount of words not differing between dialects. On the other

hand, the inclusion of all and not just differing words should give a more realistic picture, since

the focus is not only on differences between dialects, but also on similar dialect characteristics.

Fourth, we evaluated the metrics against data that was automatically segmented and labeled.

The statistical model of MAUS [11], the tool used for the automatic S&L, for German is trained
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on standard German speakers and biases the result by eliminating rare, but dialect-related phone

sequences. An example for this is the word “fährt” (drives) in a sentence read both from a

speaker of West Low German and one of Bavarian. The differences are easy to spot between

West Low German “fE:6t” and Bavarian “fO6d” (expert transcriptions in German SAM-PA1).

MAUS though labels both utterances with the “E:” (instead of “O” in the Bavarian utterance)

and, therefore, eliminates the dialectal differences at this position. The phrase final “t” and “d”,

are detected correctly by MAUS. This problem could be solved by using manually segmented

and labeled data or might be reduced by turning off the statistical language model and let MAUS

make the alignment solely based on the acoustic signal.

Another point is the unbalanced number of speakers per dialect. There are dialects with only 14

speakers (South Franconian) and dialects with over a hundred (West Low German and Bavarian-

Austrian), which has an affect on within-dialect variability.

One particular short-coming of the presented temporal metrics itself is, that insertions and

deletions in the overlap ratio are punished very hard, which is inappropriate to reflect e.g. fre-

quent phonological processes as Schwa deletions. This might be an explanation for their low

performance.
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