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Abstract: Noisy speech signals and phonetic data analysis: two phrases that rarely 

occur in the same context. This paper shows that noise cancellation and noise 

suppression methods can clean noisy speech signals to such an extent that they can 

be reliably segmented into phones semi-automatically using appropriate tools such as 

the Munich Automatic Segmentation Tool. This finding brings noisy signals and 

phonetic data analysis closer together.  

1 Introduction 

Phonetic and linguistic analyses of speech produced under adverse conditions of physical and 

cognitive load require recordings in noisy environments, in order to document realistic speech 

behaviour. An example of such a condition is the communication of drivers and passenger in 

moving cars, which is characterized by the physical load of driving as well as by the noise of 

the moving car. Recordings obtained from a microphone in this situation are inevitably 

impaired by noise. Acoustic measurements, such as the calculation of spectra, cepstra or 

formants are distorted in these recordings and can thus easily lead to misinterpretations. 

To overcome these problems we developed a system that should reproduce pre-recorded 

acoustic ambiances in a reliable manner (see Jaschke, 2012, pp. 29ff). This is achieved by 

playing back appropriately equalized noise signals (obtained by so-called “noise-only 

recordings” in a target environment) via a multitude of loudspeakers in a lab (for details see 

Sec. 2.1). The equalization is performed such that the (re-) created acoustic conditions in a lab 

should be as close as possible to the (pre-) recorded real situation. In contrast to real 

recordings (e.g. in a car) the recordings in the lab can be enhanced significantly by signal 

processing since reference signals for the noise (i.e. the loudspeaker signals) are available 

now.  

The basic question for such a system is: Is the speech production behaviour the same in the 

simulated environments as in a real driving situation? Answering this question requires 

phonetic and linguistic analyses of noisy speech material. According to Jaschke (2012), multi-

channel noise cancellation (NC) and noise suppression combined with NC (NC+S) can clean 

the signal from the noise to a certain extend (SNR improvements of about 30 dB could be 

achieved). But is this cleaning method good enough to allow reliable analyses of those 

acoustic parameters that phonetic and linguistic researchers are interested in and are these 
parameters extractable using already existing algorithms? 

The first step in the phonetic analysis of speech data is the segmentation and annotation of the 

spoken phones, words etc. in the signals. This process is very time consuming, particularly for 

a larger amount of data. The Munich Automatic Segmentation (MAUS) tool (Kipp et al., 

1996) provides a semi-automatic segmentation that might speed up the task. Further, the 

EMU system (John et al., in press) provides functions for semi-automatic constructions of 

labelling hierarchies. 

This paper will study whether speech signals that were overlaid by noise in an acoustic 

ambience simulation of a moving car and subsequently underwent NC and NC+S 

enhancement can be segmented by MAUS with the same reliability as reference signals 

without any noise. Furthermore, the contributions of the individual processing stages (NC, 

NC+S) to this reliability will be analysed. The results of the study help to advance signal-

136



processing methods for the analysis of speech in noisy environments in general and for the 

improvements of speech enhancement systems such as hands-free or in-car communication 
systems in particular. 

1.1 Ambience simulation and recordings 

The acoustic ambience simulation is based on signals of a noisy environment that are first 

recorded and then played back to listeners via loudspeakers. The signals need to be recorded 

in real situations. For example, in the case of the present study simulating a moving car 

required driving a real vehicle at different speeds, on different road surfaces, in different 

traffic conditions, etc. During these test drives, calibrated in-ear microphones included in a 

so-called artificial head recorded the environmental noise binaurally and stored the noise as a 

stereo signal. Figure 1 shows the artificial head that has been used for our recordings. 

However, before the recorded signals can be used for simulation purposes, they need to be 

checked for artefacts and prepared for a loop mode. The latter step is to avoid artefacts that 
can result when switching from the end of the signal to the beginning.  

  

Figure 1 - Test drive in our vehicle (left) with the artificial head (right) including in-ear 

microphones that record the background noise.  

Ambience simulations combine realistic acoustic situations with a controlled, research-

friendly environment. In other words, they serve to carry the field into the lab. Such 

simulations require a soundproof room. The room that has been constructed and furnished 
with two loudspeakers and two subwoofers around a microphone is displayed in Figure 2. 

In the ambience simulation the room acoustics as well as the distance and the angle of the 

listening person relative to the loudspeakers modifies the signals characteristic at the ear of 

the person. To ensure less deviation as possible, played back signals are calibrated (cf. Figure 

2). That is, the environmental signal is played via loudspeakers to an artificial head or a 

person wearing in-ear microphones. The microphone signal is compared to the in-ear 

recordings obtained in the real environment and the loudspeaker signals are modified 
(iteratively) until both signals are equalized or resemble each other as much as possible. 

Prior to recordings, speakers in the soundproof room are familiarized with their task (e.g., 

reading a story, answering questions, etc.). They are given some time to get used to the lab 

environment before and after the loudspeaker signals create the ambience simulation. Close-

talking microphones record the speakers’ utterances and the loudspeakers signals.   

1.2 Signal enhancement  

The task of the signal enhancement is to clean the signal to such an extent that the background 

noise inserted by the simulation is significantly reduced but also to keep the speech in a 

quality good enough for listeners to judge it as good speech signals as well as to keep enough 

phonetic cues for phonetic analyses.  

In our approach two different signal enhancement steps are used. The first step is a noise 

cancellation method (NC). Here the loudspeakers signal are fed into adaptive filters that try to 
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estimate the multi-path propagation of the acoustic transmission from the loudspeakers to the 

microphone that records the speakers. We have used a gradient-based estimation procedure: 

the so-called normalized least mean square (NLMS) algorithm. After estimating the acoustic 

channels the loudspeaker signals are convolved with the channel estimation and the resulting 

signals are subtracted from the microphone signal. Assuming a good match between the true 

and the estimated transmissions the subtraction can remove the noise without affecting the 

speech components in the microphone. The second one is the noise suppression method (NS). 

Here the power spectral density of the remaining noise is estimated in a first step. Afterwards 

time-variant, frequency selective gain factors are determined according to a so-called Wiener 

filter. In contrast to the first approach, in this second step (NS) always a compromise between 

the degree of noise suppression and the introduction of speech distortions has to be found. As 

Figure 2 shows each signal is noise cancelled and the enhanced signal is further processed by 
noise suppression. The result then is a noise cancelled and suppressed signal (NC+S).  

 

Figure 2 - Ambience simulation setup with equalizing/ calibration of the play back hardware 

(dotted) and the recording setup with the enhancement methodology  

1.3 MAUS Segmentation 

The Munich Automatic Segmentation (see Kipp et al., 1996; Kipp et al., 1997) is based on a 

given canonical text, statistical probabilities and a Hidden Markov Model of acoustic 

correlates of phonetic features. Based on the canonical transcription of the speech signal in 

SAMPA, pronunciation variants of the words are generated by lexicon lookup and organised 

in a graph structure. The given graph structure, in turn, constrains an HMM state space that is 

used in the data driven Viterbi beam search for the time alignment of the segment boundaries. 

The HMM includes the following acoustic parameters: 12 cepstral coefficients, energy, zero 

crossing rate and first and second derivative every 10 ms. The segmentation and labelling 

procedure results in a 10 ms grid, hence imprecise segment boundaries. In the final processing 

step boundaries are corrected somehow by shifting them to the next zero crossing in the 

signal. Kipp et al. (1996) has shown that MAUS differs less than 7% from a human 
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segmentation in terms of average matches between three manual and one automatic 

segmentation of a large corpus. Hence segmentation is not based on acoustic data only. 

MAUS formats the outcoming string of phonetic labels and the corresponding segment 

boundaries as Praat-TextGrids (Boersma, 2002). 

2 Methodology 

2.1 Material 

Since the research question was raised by the work of Jaschke (2012), we used the same 

speech database as he did. It consists of UN recordings as well as of the audio recordings 

processed in terms of NC and NC+S. The recordings comprise 10 productions of the story 

"north wind and the sun" by different speakers. Each speaker read the story in three different 

noisy in-car environment simulations (IC 1-3: 0, 50, 100 km/h, which corresponds to an 

increase in noise level), as well as in a reference environment (REF) without any added car 

noise. The ambience simulation used noise from static traffic without overtaking cars. 

Speakers (VP1-10) were 5 males and 5 females between the age of 22 and 30.  

2.2 Analysis 

MAUS was run four times for the speech signals of all four conditions (IC1-3 and REF) with 

four different input conditions in the form of different accuracies of the canonical text. Input 

differed as follows: run 1 - canonical transcription of the text; run 2 - individual canonical 

transcription of the actually spoken words; run 3 - individual transcription extended by 

assumed major prosodic units based on the orthographic transcription of the narrative; run 4 – 

further extended by assumed minor prosodic units. The resulting phone segmentations from 

run 4 were transferred from Praat TextGrids to an EMU database. The annotated database was 

then semi-automatically extended by word annotations and meta-data (see John, 2012).  

        

 

Figure 3 – Examples of the MAUS segmentation and labelling (MAU tier) aligned to the time 

signal (oscillogram and sonagram) together with the hierarchical annotation (trees) in EMU for 

a short part of a recorded unprocessed signal (left) and the same signal enhanced by NS (right) 

All MAUS segmentations (for an example see Figure 3) from run 4 were compared across the 

different processing steps with the dependent variable recording situation (IC1-3 and REF) in 

terms of the beginning of the word segmentation (BW), deviations in the chosen pronunciation 
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variants of words (VW) and phones (VP), as well as the duration and overall number of chosen 

phones (nP, �tP) and pauses (n<P:>, �t<P:>). Interferential statistics were used to interpret the 
results. 

3 Results 

Figure 3 exemplifies the outcome of the MAUS segmentation and labelling of the phones as 

well as the hierarchical labelling structure for words and some meta-data. In run 1 and 2 for 

which no prosodic information was given, MAUS segmentation failed (algorithm crashed or 

returned an error message) for most of the NC+S signals of IC3 and for some of the other 

speed simulations, as well as for some NC signals. In contrast, in run 3 (additional major 

prosodic units) MAUS segmentation succeeded for all signals but three (VP1 NC in IC3, VP2 

NC+S in IC1, VP4 NC+S in IC2) and in run 4 (with minor prosodic units) for all but two 

(VP4 UN, VP6 NC both in REF). All UN signals were successfully segmented in all runs.  

Figure 3 provides an example, how the selection of word pronunciation variants (VW) and 

phones (VP) can differ for the same utterance without and with signal enhancement (NC). 

While a [@n]-sequence was segmented in the UN signal in the word <Strahlen>, MAUS 

chose a word pronunciation with @-reduction in the NC signal. Furthermore, there are 

differences in phone lengths for the initial consonant cluster in the same word.  

   

     

Figure 4 – Different word variants for NC and NC+S enhanced signals (top) and overlaid 

spectral slices (bottom-left) from the temporal midpoint of the phone following the postalveolar 

fricative (solid) and the nasal (dotted) in <schon> as well as the spectrogram of the nasal in 

<Strahlen> in the NC+S signal (bottom-right).  

These kinds of differences are very small, i.e. they concern at most 12 deviations for the 

chosen word variants (between UN and NC signals over all segmentations of the recordings 

from the 100 km/h scenario). Deviations are also found in the recordings of the reference 

scenario (four times between UN-NC; six times between UN-NC+S). In all cases word 

variant differences are based mainly on unequal segmentations and labelling of glottal stops, 

alveolar stops, a-Schwa, e-Schwa and pauses. Over all, the simulation scenarios yielded more 

word variants with e-Schwa and less variants with a-Schwa, glottal stops and pauses for the 

UN than for NC and NC+S signals. The opposite was true for the reference scenario. 

Figure 4 exemplifies differences in the segmentation in dependency of the different 

processing steps NC and NC+S. Another vowel than a-Schwa or e-Schwa is affected. The 
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spectral slices in Figure 4 considerably deviate between 4000-7000 Hz. This frequency range, 

which is crucial for nasal detection, is suppressed by NC+S to the extent that the intensity of 

the vowel section does not differ anymore from that of the following nasal (solid grey lines 

are in the area of the dotted lines), while the two sections do still differ at about 3800 Hz. 

Figure 3 also shows, how the formant structure of the nasal in <Strahlen> is maintained after 

NC processing, rather than being suppressed after NC+S processing, as in Figure 4. 

The analysis of the beginning of the word segmentation (BW) showed significant (p < 0.001) 

differences between the three steps of processing (UN, NC, NC+S). NC or NC+S processing 

did not affect BW of the reference scenario recordings. However, for IC1-3 BW was later in the 

NC and NC+S signals (differences NC-NC+S post-hoc p=0.857) than for the UN signals 

(differences to NC and NC+S each p < 0.001). In the UN condition, segmentation and 

labelling started quite at the beginning of the recording except for the 50 km/h scenario. From 

a descriptive point of view only, NC+S led to earlier BW values than NC except for IC3.  

Figure 5 exemplifies the differences in phone length (�tP) for the different processing steps. 

First of all, the whisker-box plots display quite equal mean values for all sound classes. The 

same is true for pauses (not shown in the figure). The differences between the steps reside in 

the outliers. For most of the classes, outliers are reduced in the enhanced signals, whereby NC 

reduces outliers to an extent comparable to that of the unenhanced reference signals. The 

exception is the vowel class. Here, outliers in terms of longer vowel durations occurred for 

both processing methods in contrast to the reference signal. The largest number of outliers 
was found in the unprocessed signals. 

To sum it up, compared to the REF signals, BW, VP, nP and �tP values are very different in UN 

signals of the IC1-3 conditions, whereas for the NC and NC+S signals, the values 
approximate those of the reference values in the REF signals.  

 

Figure 5 – Phone lengths in ms for different sound classes for all simulation scenarios together, 

separated by the 3 processing steps (UN=0, NC=1, NC+S=2) in comparison to the unprocessed 

reference scenario signals (Ref.0).  

4 Discussion 

The results show that MAUS segmentation succeeds only with a very detailed canonical 

transcription. The segmentation of the unprocessed signals in the first run has to be more 

erroneous than for the processed signals, because of the inaccurate canonical transcription. 

Manual corrections or precisions of the canonical transcriptions became necessary, since, for 

example, some of the speakers varied word forms or did not read the title. Unenhanced 

signals are inevitably impaired by noise. This noise led to misinterpretations in the MAUS’ 

alignment procedure. Somehow surprising is the fact that the reference signals, which were 

not overlaid by noise, were segmented successfully in the first run. An explanation might be 

that the reference scenario was the first to be read by the speakers. The speakers did not know 

the narrative so that they read very slowly and articulated very clearly. More detailed 

linguistic analyses may shed some light on this question. Moreover, some speakers did not 

adhere to the punctuation when reading the narrative. These recordings make a further 

revision of the canonical transcription of prosodic units necessary. 
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The discussion above already implies differences in the word variants chosen by MAUS for 

the unprocessed signals on the one hand and the enhanced signals on the other. Yet, the 

additionally found differences between the two processing steps NC and NC+S are somewhat 

unexpected. Some of these differences may be due to the fact that the suppression method 

masks some phonetic cues, whereas the cancellation method does not. Other differences 

between the word variants selected by MAUS are explainable by the phonetic contexts in 

which the sound segments occurred. Glottal stops, a-Schwa and e-Schwa all appear at word 

boundaries and are thus often adjacent to pauses and/or affected by final lengthening and 

rapidly decreasing intensity. Sounds in such contexts are hard to detect in noisy environments 

and also hard to maintain by signal enhancement. Furthermore, e-Schwa deletion is a 

common phonological process in German, which is taken into account by MAUS. It seems 

plausible that MAUS did not segment an e-Schwa whenever there were no obvious phonetic 

cues to a vowel segment. The same is true for the alveolar stops. They appear in the most 

frequently occurring words in the narrative and are usually subject of articulatory reduction 

(e.g. <Wanderer> [vand���] > [van����]; <einst stritten> [�a�nst�t��t�n] > [a	�ns�t���n
]). So, 

MAUS is more likely not to segment and label these stops unless there are strong cues. But, 

vice versa, MAUS chooses the canonical word pronunciation variants with e-Schwa and 

alveolar stops in noisy parts, because noisy signals contain enough acoustic energy for the 

time period to align all labels in the graph.  

The different word variants yielded by different enhancement steps lead to the conclusion that 

there are differences in the signal regarding the amount and clarity of acoustic cues that 

remain in the signal. These differences need to be taken into account in follow-up studies. 

With respect to the missing spectral structure (particularly in the mid-frequency region) in 

signals enhanced by NC+S, the NC enhancement method without suppression seems to be 
overall more appropriate. 

The earlier beginning of the word segmentation for the simulation scenarios with the noisy 

signals shows that MAUS aligns phones to noisy parts of the signals even before the first 

phone is actually produced. Although there is no statistical confirmation of the differences 

between an earlier segmentation start in the NC+S than in the NC signals, the results show 
different effects on the MAUS performance in dependency of the enhancement method.  

The choice of the pronunciation variant and the beginning of the word segmentation are 

closely related. MAUS already aligns phones to the noisy signal before the actual speech 

signal starts. The wrong word segmentation in the beginning of the utterance affects the word 

segmentation in the actual speech signal due to the graph based alignment method used by 

MAUS. The graph is not recycled, when parts are already aligned. Thus the wrong beginning 

causes follow-up errors up to an unpredictable time in the signal. Signal enhancement can 

correct these errors to a certain degree, primarily by avoiding an early segmentation start. The 

small but existing differences in NC and NC+S performances for the speed scenarios IC1-3 

may be interpreted in the light of the acoustic energy left in the signal. The canonical 

transcription of the narrative started with pauses followed by a glottal stop. MAUS selected 

different onsets for the glottal stop. As has been explained in the results section, glottal stops 

detected by MAUS vary very much in duration. Thus, in our database these stops need to be 

treated as prosodic units rather than as phones. A more detailed canonical transcription may 

solve this problem. More detailed canonical transcriptions mean higher effort in the pre-
processing. However, the benefits must be weighed against the higher effort.  

Phone length is a further parameter, which heavily depends on the beginning of the word 

segmentation and the acoustic energy in the signal. The length of all the phones already 

aligned to the noisy part of the signal only show the characteristics of the graph used by 

MAUS, i.e. intervals of 10 ms. Acoustical energy is more strongly suppressed by noise 

suppression than by noise cancellation. Thus, differences in phone length are predictable as 
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far as phones adjacent to pauses are concerned. Due to the results on phone length noise 

cancellation seems to be more preferable.  

5  Conclusion  

The present results show that the time-consuming task of annotation can be automated for 

noisy signals when they are improved by noise cancellation and noise suppression methods. 

Further it shows that enhancement can substantially affect the phone length and the beginning 
of the word segmentation. 

The results received after noise cancellation were better than those where additional 

suppression was applied to the noisy signals. The noise cancellation is a method that crucially 

depends on the knowledge about the acoustic transmissions from the loudspeakers to the 

microphones. Noise cancellation is thus not applicable in every recording situation, but 

limited to ambience simulation. However, in such a simulation our method is useful for 

gaining insights into spoken language communication in noisy environments, as in in-car 

communication. The present findings are a prerequisite for the next steps of our study, i.e. the 

phonetic and linguistic analyses of speech in noisy environments. 

6 Outlook 

Only a comparison of the MAUS segmentation and a manual segmentation is able to assess 

the precision of the set segment boundaries. However, manual segmentation was not carried 

out as yet. Further analyses need to confirm that the signal – despite its processing – contains 

enough acoustic cues to be comprehensible for listeners and already existing data extracting 

algorithms.  

Further, additional recordings will contain spontaneous speech, including enhancement by 

noise suppression without preceding noise cancellation. The goal will be to enhance 

conventional noise suppression schemes such that they can also improve the results of 
phonetic signal analyses tools.  
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