
REALISING THE TRANSLATION OF UTTERANCES INTO MEANINGS BY

PETRI NET TRANSDUCERS

Robert Lorenz and Markus Huber

Department of Computer Science

University of Augsburg

robert.lorenz@informatik.uni-augsburg.de

Abstract: In this paper, we illustrate by a small case study how the translation

of utterances into meanings within a hierarchical cognitive dynamic speech signal

processing system can be realised by Petri net transducers (PNTs).

PNTs are a natural generalisation of finite state transducers (FSTs) for the transla-

tion of partial languages consisting of partial words (with a partial order on their

symbols) instead of (linear) words (having a total order on their symbols).

For the considered case study we extend previous definitions of PNTs by weights

and composition operations. We use bisemirings for the set of weights of a PNT.

1 Introduction

Weighted finite state transducers (FSTs) are classical nondeterministic finite automata in which

transitions additionally are equipped with output symbols and weights [1]. An important prac-

tical application of such transducers is natural language processing. In this application domain,

the weights are used to represent probabilities of transition executions. The behaviour of a

transducer is defined by a weighted relation between languages over different alphabets (a trans-

ducer defines a weighted translation between two languages). For a uniform definition of the

behaviour, the set of weights is equipped with the underlying algebraic structure of a semiring.

One important feature of weighted FSTs is the possibility of constructing complex FSTs from

simpler ones using composition operations. There are already efficient implementations of such

operations in standard libraries [7, 8].

In [5] we introduced a generalisation of FSTs through Petri net transducers (PNTs). PNTs are

defined (in a natural way) for the translation between so called partial languages. A partial

language is a generalisation of (classical) languages, containing so called partial words not

consisting of a total order on their symbols but of a partial order. In [5] we did not yet consider

weights and composition operations on PNTs.

The aim of this paper is to examine the application of PNTs to the translation of recognition re-

sults on the syntactic level into semantic interpretations within a hierarchical cognitive dynamic

speech signal processing system (as introduced in [2, 9]) through a small case study. Within

this system, an acoustic signal is translated over several levels of abstraction into a recognition

result on the syntactic level via FSTs. In a next step, recognition results on the syntactic level

are translated into semantic interpretations, so called meanings. A common possibility for the

representation of meanings are acyclic directed graphs [10, 3]. Since such graphs can be rep-

resented by partial orders, FSTs are not longer suitable in this case. Therefore we propose to

realise this translation by PNTs. This requires an adequate extension of the definitions from [5]

by weights and composition operations.

Considering weights, it turns out that the algebraic structure of semirings (used for FSTs) needs

to be extended to bisemirings similar as in [4] in the case of so called weighted branching au-

103



tomata. Concerning composition operations, it is possible to adapt several operations which are

central also in the case of FSTs, such as union, product and language composition. Through

language composition, FSTs translating an acoustic signal into a recognition result on the syn-

tactic level can be composed with a PNT translating this result from the syntactic level to the

semantic level. In this way it is possible to build hierarchical systems consisting of FSTs on

some levels and of PNTs on other levels.

The paper is organised as follows: In section 2 we briefly describe the hierarchical cognitive

dynamic speech signal processing system the considered case study is based on. In section 3

we describe the case study for the application of PNTs to the translation between syntactic and

semantic level of the system. This section includes the necessary extensions of PNTs by weights

and composition operations. Finally, in section 4 we give an outlook on future work.

2 A Hierarchical Cognitive Dynamic Speech Signal Processing System

Acoustic

Signal

Translation

...

Translation

Syntax of

Recognition

Translation

Semantics of

Recognition

User

State of

Information

Unification

Update

Semantic

Level

Syntactic

Level

Pragmatic

Level

Figure 1 - Analysis side of

the hierarchy.

In this section we briefly describe the design of the hierarchi-

cal speech signal processing system our case study is based

on. This system was proposed in [2, 9, 5] and figure 1 gives

an abstract overview of its analysis part (see [9] for a de-

tailed view). The aim is to control a natural language dia-

logue, where user queries can be freely formulated. The user

advises the system to execute certain actions on certain data

objects on his behalf. Thus these actions and objects have to

be identified by the system. During the dialogue information

is collected until the identification is possible.

In the shown approach, the system successively integrates

recognition results of user queries (nodes on different lev-

els of abstraction; analysis of an acoustic signal) into an

information-state and generates requests concerning missing

information (imagine additional nodes on the right where the

arrows point downwards; synthesis of an acoustic signal).

The approach was developed in cooperation with institutes

from TU Dresden (R. Hoffmann) and BTU Cottbus (M.

Wolff) which are responsible for the lower hierarchical levels, up to the syntactic level. On

every level, recognition results are represented by weighted words over appropriate alphabets,

where the weights are used to express probabilities. The translation steps between the levels

are realised by (weighted) FSTs [2]. Through appropriate composition operations, FSTs are

combined for the translation over multiple levels into one single transducer.

The authors of this paper are part of the research team working on the semantic and pragmatic

level. The semantic level is used to interpret syntactic recognition results of speech signals. In

particular, those results need to be translated from the syntactic level into semantic interpre-

tations (this translation happens within the dotted rectangle of figure 1). Since we use partial

orders as modelling language on the semantic and pragmatic level, it is not longer possible to

use (classical) FSTs for the translation between those levels.

Within the following case study we propose PNTs for the mentioned translation into semantic

interpretations. In [5] we already showed that every FST is a special PNT. In this paper we ex-

tend the definitions from [5] by equipping PNTs with weights and introducing the composition

of PNTs. This shows, that the whole hierarchy of figure 1 including the semantic level could be

completely realised by combining FSTs and PNTs.

104



3 A Case Study

In this section we provide a small case study for the application of PNTs to the translation

of recognition results on the syntactic level into semantic interpretations within the described

system. In subsection 3.1 we introduce the world model the case study is based on. A world

model describes all semantic interpretations (which we call meanings) of utterances (recognised

on the syntactic level) the system can deal with. In subsection 3.2 we introduce weighted PNTs

and construct a PNT for the translation of utterances into meanings for the previously introduced

world model. Such a PNT we call UMP-Transducer (UMP-T) (UMP abbreviates Utterance-

Meaning-Pair). In subsection 3.3 we introduce the language composition of PNTs and show

how the constructed UMP-T can be composed with lower level FSTs.

3.1 World Model

In [3] we introduced a uniform data structure for the representation of all components of the

semantic and pragmatic level. This data structure we called feature-values-relation (FVR). In

particular, we presented a representation of data values together with their semantic interpreta-

tions as an FVR. Briefly, an FVR is an acyclic directed graph describing a hierarchy of semantic

categories (which we call features) which additionally relates data values (which we call values)

to features and IDs of data objects to values (actions are modelled as features).

Each concrete application of the introduced system is based on a world model which is given

as an FVR and describes all data objects, values and features the system can cope with. To keep

the example simple and to obtain smaller graphics we assume that the only action possible is

to call a person. Therefore we leave out any action-part. We consider the (data-object) features

person, firstname and lastname, where firstname and lastname are sub-features of person, i.e.

person is described by (consists of) these two features. The features firstname and lastname

are not related, obviously. Again for simplicity we do not consider other features such as for

example address and relations between features like person “lives at” address which also can be

modelled using FVRs. For the example it is only possible to describe the person which should

be called by its first-name and last-name. From now on we abbreviate the features person,

firstname and lastname by P, FN and LN, respectively.

Assume that the world model includes exactly the following three persons given by their names:

Parker Lewis, Peter Parker and Pete Rapaka. The world model relates their names to the corre-

sponding features and different object IDs to their first- and last-names as illustrated in figure 2.

P

LN

RapakaParkerLewis

FN

PetePeterParker

1 2 3

Figure 2 - A simple world model containing

three persons.

The world model not only describes all se-

mantic interpretations but completely deter-

mines all utterances which can be recog-

nised. These are all utterances which have

a semantic interpretation within the world

model, i.e. which can be mapped to a part of

the world model. In general, different utter-

ances may have the same semantic interpre-

tation and there may be different possible

semantic interpretations of one utterance.

3.2 UMP-Transducers

In this subsection we first introduce PNTs and then construct a concrete PNT for the translation

of utterances into meanings within the world model from the previous subsection. We only give

105



an informal description and use a very basic syntax of Petri nets for those which are not familiar

with their theory. For a detailed, complete and formal introduction to PNTs we refer to [6].

A Petri net consists of transitions (drawn as rectangles), places (circles) and a flow relation be-

tween places and transitions (directed edges). The flow relation assigns pre- and post-conditions

to transitions. The state of a PNT is given by a marking of some places (tokens in places). If a

place is marked, then the corresponding condition is satisfied. Figure 3 shows three Petri nets

with transition names drawn inside the transitions.

The occurrence of a transition is possible, if all of its pre-conditions are satisfied. Its occurrence

leads to a state where none of its pre-conditions and all of its post-conditions are satisfied. The

main difference to automata is that the state of a PNT is distributed over several locations.

If, in some state, two transitions do not share pre-conditions and all pre-conditions of both

transitions are satisfied, then both transitions may occur independently in any order or also

simultaneously. Such transitions are called concurrent (in the considered state). This makes

it possible to define the occurrence of step sequences, where each step is a set of concurrent

transitions. For example, in the net N1 in figure 3 the step sequence {a1}{b1}{c1}{d1} can

occur and in the net N3 from the same figure the step sequences {a3}{b3,e3}{c3, f3}{d3} or

{a3}{b3}{c3,e3}{ f3}{d3} can occur. More general, it is possible to define partially ordered

runs (po-runs) of a Petri net. Such a run is a partially ordered set of nodes labelled by transition

names, called LPO. The nodes (drawn as small filled circles) represent transition occurrences

and the partial order (drawn by directed edges) an “earlier than”-relation between them in the

sense that one transition occurrence can be observed earlier than another transition occurrence.

If there are no arrows between two transition occurrences, then these transition occurrences are

concurrent in the above described sense. An LPO is a po-run of a net, if it is consistent with

the set of step sequences which can occur in the net. In figures, in general we do not show the

names of the nodes of an LPO, but only their transition name labels and we often omit transitive

arrows of LPOs for a clearer presentation. Figure 3 shows a po-run for each of the shown nets.

A Petri net transducer (PNT) is a Petri net where each transition is augmented with an input

label and an output label. These labels may be symbols from specific alphabets or the empty

word symbol ε . For every transition occurrence, a PNT may read a symbol x from an input

alphabet Σ and may print a symbol y from an output alphabet ∆. Graphically, these symbols are

annotated to transitions in the form x : y. If no input symbol should be read or no output symbol

should be printed, we use ε as annotation. Each PNT has an initial and a final state, which are

both defined by single places. We only consider po-runs, which can occur in the initial state and

lead to the final state. The set of all such po-runs of a PNT N we denote by LPO(N).
An input word of a PNT is defined as a po-run of the net with nodes relabelled with input

symbols (where ε-labelled nodes are deleted). Analogously, the output word corresponding to

an input word is built through relabelling nodes with output symbols. For LPOs u over Σ and

v over ∆, we denote by LPO(N,u) the subset of all LPOs from LPO(N) with input label u, and

by LPO(N,u,v) the subset of all LPOs from LPO(N,u) with output label v.

Translating input words into output words, a PNT provides a technique for translation of LPOs

over an input alphabet into LPOs over an output alphabet. Figure 3 shows three PNTs with

associated po-runs, input words and output words. The PNTs N1 and N2 have two different

utterances on the syntactic level as input and no output. Such an utterance is a sequence of

words and may be represented by a total order. The PNT N3 has no input and a meaning as

output. A meaning is an FVR which is consistent with the world model and defines a possible

semantic interpretation of an utterance by relating values occurring in the utterance to features

and IDs of data objects. Since we can identify an FVR with its transitive closure, meanings can

be viewed as partial orders.

Observe that within the considered world model the inputs of N1 and N2 define two alternative

106



a1Call:ε

b1Peter:ε

c1Parker:ε

d1please:ε

N1

a2Please:ε

b2call:ε

c2Peter:ε

d2Parker:ε

N2

a3ε:P

b3ε:FN

c3ε:Peter

d3ε:2

e3 ε:LN

f3 ε:Parker

N3Input

Run

Output: ε

Input

Run

Output: ε

Input: ε

Run

Output

Call

Peter

Parker

please

a1

b1

c1

d1

Please

call

Peter

Parker

a2

b2

c2

d2

P

FN

Peter

2

LN

Parker

a3

b3

c3

d3

e3

f3

Figure 3 - Three PNTs with po-runs and associated input words and output words.

utterances having the (same) meaning given by the output of N3, i.e. both relate to the first-

name and last-name of the person with ID 2. It is possible to define a PNT N4 translating these

utterances into their meaning using the composition operations ⊕ for the union and ⊗ for the

product of PNTs through N4 = (N1 ⊕N2)⊗N3.

Before we formally define these (and other) composition operations, we need to introduce

weights of PNTs in order to reflect probabilities of recognition results. Weighted PNTs are

PNTs in which each transition additionally carries some weight. Graphically, a weight ω(t) is

annotated to a transition t in the form /ω(t). The weights are elements of an algebraic struc-

ture called bisemiring. A bisemiring is a six-tuple S = (S,⊕,⊗,⊠,0,1), where ⊕, ⊗ and ⊠ are

binary operations on the set S (S-addition, S-sequential multiplication and S-parallel multiplica-

tion) satisfying the following assumptions: ⊕ is commutative and associative, ⊗ is associative

and distributing over ⊕, ⊠ is associative and commutative and distributing over ⊕, the zero

0 ∈ S is neutral w.r.t. ⊕ and absorbing w.r.t. ⊗ and ⊠, and the unit 1 ∈ S is neutral w.r.t. ⊗. For

example, ([0,1],max, ·,min,0,1) is a bisemiring, which we will use in all following concrete

examples. The ⊗-operation is used to compute the weight along paths within a po-run by se-

quentially multiplying the weights of the transitions. The ⊠-operation is used to compute the

weight of concurrent paths (of transition occurrences) within a po-run by parallel multiplying

the weights of these paths. The ⊕-operation is used to compute the weight of a pair of input and

output words (u,v) by summing up the weights of all po-runs with corresponding input word

u and output word v. Figure 4 shows the PNT N4 together with example weights and with its

two po-runs. One po-run defines the input word of N1 and the output word of N3 and the other

po-run defines the input word of N2 and the output word of N3.

In order to define the weight of a po-run, consider a po-run as the synchronous product of all

of its lines with maximal length, where a line of an LPO is a totally ordered sub-LPO. The

set of all maximal lines of an LPO lpo we denote by lines(lpo). For example, the po-run of

the net N3 in figure 3 has the maximal lines a3b3c3d3 and a3e3 f3d3. The weight of a line

is computed by sequentially multiplying the weights of the transitions, i.e. ω(a3b3c3d3) =
ω(a3)⊗ω(b3)⊗ω(c3)⊗ω(d3). If ⊗ is distributive over ⊠, we define the weight of a po-run

lpo by ω(lpo) =⊠lpo′∈lines(lpo)ω(lpo′).
The relation between ⊗ and ⊠ is needed to derive effective constructions for composition

operations. The weight is defined in such a way that only the weights of dependent parts of a

po-run are sequentially multiplied and the weights of independent parts are parallel multiplied.

The bisemiring ([0,1],max, ·,min,0,1) satisfies the above condition. For example the left hand

side po-run of N4 has the weight min(ω(abcde f gh),ω(abcdei jh)) = 0.36 and the right hand

side po-run has the weight min(ω(klmne f gh),ω(klmnei jh)) = 0.54.

107



a

Call:ε/.4

b

Peter:ε/1

c

Parker:ε/1

d

please:ε/1

e

ε:P/1 f

ε:FN/1

g

ε:Peter/1

h

ε:2/1

k

Please:ε/.6

l

call:ε/1

m

Peter:ε/1

n

Parker:ε/1

i

ε:LN/.9

j

ε:Parker/1

(N1 ⊕N2)⊗N3

Runs
a b c d e

f g

h

i j

k l m n e

f g

h

i j

Figure 4 - A weighted PNT together with a po-run.

The output weight a PNT assigns to all pairs of LPOs u over Σ and v over ∆ is defined through

N(u,v) =
⊕

lpo∈LPO(N,u,v)

ω(lpo),

if this sum exists, is an element of the bisemiring and is well-defined (note that the sum may be

infinite). If this is the case for all such pairs of LPOs (u,v), the PNT is called regulated. For

LPO(N,u,v) = /0 we set N(u,v) = 0. The weight a PNT assigns to v over ∆ is computed from its

output weights through N(v) =⊕uN(u,v). If u1 denotes the input word of N1, u2 the input word

of N2 and v the output word of N3, then N4(u1,v) = 0.36, N4(u2,v) = 0.54 and N4(v) = 0.54.

It is possible to introduce several useful composition operations on regulated PNTs. In general,

a composition operation is given in a functional form defining the output weight of the com-

posed PNT based on the output weights of the original PNTs and bisemiring-operations. In a

next step it is necessary to find an effective construction, showing that there is a composed PNT

having the intended output weight. For example, the sum (or union) N1 ⊕N2 of two PNTs N1

and N2 over the same bisemiring, input alphabet Σ and output alphabet ∆ is defined as a PNT

with the output weight (N1 ⊕N2)(u,v) = N1(u,v)⊕N2(u,v).
The product (concatenation) N1 ⊗N2 of two PNTs N1 and N2 over the same bisemiring, input

alphabet Σ and output alphabet ∆ is defined as a PNT with the output weight

(N1 ⊗N2)(u,v) =
⊕

u=u1;u2,v=v1;v2

N1(u1,v1)⊗N2(u2,v2).

The sum runs over all possible ways of decomposing an LPO u into a prefix u1 and a suffix

u2 of the form u = u1;u2, and similar for v. For both, union and product, there are effective

simple constructions of a composed PNT as illustrated by PNT N4 from figure 4. Note that

there are several possibilities for reducing the size of N4, but it is a topic of future research to

develop a general theory for the minimisation and optimisation of PNTs. Other composition

operations which can be defined are closure, language composition, parallel product and syn-

chronous product [6]. The operations of union, product, closure and language composition are

also central operations in the case of FSTs. The operations of parallel product and synchronous

product are new and cannot be applied to FSTs.

3.3 Adding the Semantic Level to the System

Assume the user says “Call Parker, please.” and the speech recogniser assigns the probability

.8 to the utterance Call→Parker→please and the remaining mass of .2 to other utterances. For

the example we restrict ourselves to the one alternative Call→Rapaka→please which sounds

somewhat similar. Note that the higher weighted utterance may relate to a first-name or a last-

name of a person since both cases are covered by the world model. However, on the syntactic

108



Call/1 Parker/.8

Rapaka/.2

please/1

G

ε/1

ε/.8 ε/1 P/1

LN/1 Parker/1 2/1

FN/1 Parker/1 1/1

ε/.2 ε/1 P/1

LN/1 Rapaka/1 3/1

N5P FN Parker 1

.8
P LN Parker 2

.8
P LN Rapaka 3

.2

m1

m2

m3

Figure 5 - “Call Parker, please.” gets translated into different weighted meanings m1, m2 and m3.

level a speech recogniser is not able to make a distinction because there is no evidence within

the acoustic signal. The recognition result can be represented by the FST G in the upper left

part of figure 5. Note that we left out the input symbols and show only a generator instead of a

transducer because the input – the acoustic signal – does not matter for the following thoughts.

Two transducers can be language composed if the output alphabet of the first one equals the

input alphabet of the second one. This operation can be seen as a chained translation from the

input alphabet of the first transducer to the output alphabet of the second one. The language

composition T1 ◦T2 of FSTs T1 and T2 is functionally defined via

(T1 ◦T2)(u,w) =
⊕

v

T1(u,v)⊗T2(v,w),

where the sum runs over all v ∈ ∆
∗

1 representing the output label of a path of T1 and the input

label of a path of T2. In the construction of T1 ◦ T2, a transition t1 from T1 is merged with

a transition t2 from T2 if the output symbol of t1 coincides with the input symbol of t2. The

weight of the merged transitions is derived by sequential multiplication. The transitions of T1

having empty output symbol, as well as all transitions of T2 having empty input symbol are

put into an arbitrary but fixed sequence, i.e. weights are sequentially multiplied. This way, the

constructed FST has the intended weight.

For PNTs, such a construction does not make sense, since a PNT is able to reflect concurrency.

If there is a transition of the first PNT with empty output label, no symbol is printed if it

fires. Therefore it should be independent from each transition of the second PNT. A similar

argumentation holds for transitions of the second PNT with empty input symbol. The language

composition N = N1 ◦N2 of PNTs N1 and N2 is constructed by merging transitions in the same

situation as for FSTs. The other transitions are reused with unchanged input and output symbols,

weights and edges and remain unordered. A functional definition of the composed PNT’s weight

is unclear since the concurrency relations between transition occurrences may be complicated.

Since each FST can easily be represented by a PNT [5, 6] we can apply language composition

to G and some UMP-T translating the outputs of G into the meanings m1, m2 and m3 shown in

figure 5 (this UMP-T can be constructed in a similar way as shown in the last subsection for

other utterances and meanings). The result of the composition might look like N5 on the right of

figure 5. Note that we assumed in the figure that all transitions of the UMP-T carried the weight

1. Therefore, the probabilities of the recognition result are promoted to the meanings. The

two upper meanings have the same weight because they originated from the same (ambiguous)

utterance. N5 is also only a generator since G is one. Note that N5 is the result of the language

composition over all levels from figure 1 for the acoustic input “Call Parker, please.”. Thus it

represents all possible semantic interpretations of the user’s input.

In general, the transition weights of a UMP-T are not equal to 1, but are adjusted during a

dialogue. For example, since the system does not know which person to call, it generates a

request like “Should I call Parker Lewis or Peter Parker?”. Now it is more likely that the

109



user gives an answer where both a first-name and a last-name are included. Accordingly the

weights inside the UMP-T can be adjusted to reflect this expectation. Another possibility for

the adjustment of weights is to take the user’s preferences into account. If a user often describes

a person only by its first-name than this translation should be more likely. In the example the

uppermost meaning would then gain a higher weight than the second one although both still

originate from the same utterance.

4 Outlook

There are important further steps in several directions. We aim to develop a complete the-

ory of composition and optimisation operations of PNTs including efficient algorithms. For

application in semantic dialogue modelling and speech recognition, we also need to find effi-

cient algorithms computing the N best po-runs of a PNT. At the time of writing we examine

semi-automatic procedures to construct a UMP-T from experimental audio data (generated in

Wizard-of-Oz experiments). Moreover, we want to apply the same theory to the synthesis part

of the described hierarchical system.

References

[1] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted Automata. Mono-

graphs in Theoretical Computer Science. Springer, 2009.

[2] R. Hoffmann, M. Eichner, and M. Wolff. Analysis of verbal and nonverbal acoustic signals

with the Dresden UASR system. In Verbal and Nonverbal Communication Behaviours,

volume 4775 of LNAI, pages 200– 218. Springer, 2007.

[3] M. Huber, C. Kölbl, R. Lorenz, R. Römer, and G. Wirsching. Semantische Dialogmod-

ellierung mit gewichteten Merkmal-Werte-Relationen. In Proceedings of ”Elektronische

Sprachsignalverarbeitung (ESSV)”, volume 53 of Studientexte zur Sprachkommunikation,

pages 25–32, 2009.

[4] D. Kuske and I. Meinecke. Branching automata with costs - a way of reflecting parallelism

in costs. Theoretical Computer Science, 328:53 – 75, 2004.

[5] R. Lorenz and M. Huber. Petri net transducers in semantic dialogue modelling. In Pro-

ceedings of ”Elektronische Sprachsignalverarbeitung (ESSV)”, volume 64 of Studientexte

zur Sprachkommunikation, pages 286–297, 2012.

[6] R. Lorenz and M. Huber. Towards a theory of weighted petri net transducers. In Appli-

cations and Theory of Petri Nets, 34th International Conference, Proceedings. submitted,

2013.

[7] M. Mohri. Weighted Automata Algorithms, pages 213 – 254. In Droste et al. [1], 2009.

[8] M. Wolff. Akustische Mustererkennung. Habilitation, 2009.

[9] M. Wolff, R. Römer, and R. Hoffmann. Hierarchische kognitive dynamische Systeme

zur Sprach- und Signalverarbeitung. In Proceedings of ”Elektronische Sprachsignalver-

arbeitung (ESSV)”, volume 64 of Studientexte zur Sprachkommunikation, pages 96–103,

2012.

[10] S. Young. Still talking to machines (cognitively speaking). In T. Kobayashi, K. Hirose,

and S. Nakamura, editors, INTERSPEECH, pages 1–10. ISCA, 2010.

110


