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Abstract: How does the brain recognize speech? In cognitive neuroscience, this 

question is usually addressed by experiments using neuroimaging methods, e.g. 

functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). 

Although there is tremendous progress in better understanding how the human brain 

recognizes speech, there is actually little progress in elucidating the computational 

mechanisms of how this is achieved. Here, I present a recently developed 

computational model which uses recent neurobiological insights from another 

species, songbirds. Using this computational model, we show that a fusion of two 

well-established computational approaches, recurrent neural networks and Bayesian 

filtering, can be used to recognize both birdsong and human speech. The recurrent 

neural network is based on sequential dynamics as implemented by heteroclinic 

channels and Hopfield attractor networks. The Bayesian filtering uses a recent 

formulation which enables online decoding of hierarchical, stochastic, nonlinear 

dynamical systems. In summary, this model may, on one hand, be an appropriate 

model for testing quantitative predictions in cognitive neuroscience experiments and, 

on the other, a novel machine learning tool for artificial speech recognition. 

1 Introduction 

Speech recognition is a fascinating field where computationally inclined researchers work on 

developing artificial speech recognition (ASR) algorithms, and cognitive neuroscientists 

work, in parallel, on speech recognition as performed by human subjects. One may expect, in 

principle, strong interactions between these two fields. However, as observed from the 

cognitive and computational neurosciences, this does not seem to be the case. One reason may 

be that there is no common modelling ground, i.e. cognitive neuroscientists usually employ 

rather coarse-grained non-mathematical models or concepts about how the brain recognizes 

speech while ASR researchers have to provide working computational solutions, which are 

not necessarily considered neurobiologically plausible [1-3].  

Here we describe a computational modelling approach which may, in principle, be useful for 

both cognitive neuroscience and ASR or machine learning. The approach is based on 

experimental and computational evidence that the brain uses a hierarchy of time scales to 

perform robust and accurate auditory online recognition [4-8]. Furthermore, to achieve 

neurobiological plausibility, we use a recently established neural network approach using 

continuous nonlinear dynamics. Critically, we apply Bayesian filtering to a recurrent neural 

network to derive update equations which exchange predictions and predictions error 

messages between neurons [9, 10]. The resulting system shares several key features with 

speech recognition as done by the brain: it (i) operates online, (ii) predicts its input, (iii) 

employs multi-scale decoding, and (iv) is generally robust under adverse conditions. 

In the following, we will briefly describe the model, and will illustrate the main features of 

the approach using applications. Finally, we discuss the relevance of this model for auditory 

speech recognition both in cognitive neuroscience and ASR. 
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2 Modelling 

The overall goal is to develop a model that can track hidden states of a speaker causing the 

on-going sound waves as sensory input to the recognizing system. To do this, we use 

hierarchically structured, continuous, stochastic nonlinear dynamical systems as a generative 

model and use Bayesian filtering to infer about the hidden states given the sensory input [11]. 

As we will show below, the recognizing system will compute continuous predictions and 

prediction errors in an online fashion. We will demonstrate that the prediction error can be 

used to classify words with high performance. 

How can one derive a neurobiologically plausible model of speech recognition? For obvious 

reasons, experiments using human subjects are usually performed non-invasively and 

experimental findings are too coarse-grained both in space and time to elucidate the 

computational mechanism at a microscopic neuronal scale. Interestingly, the songbird brain 

has to solve a similar task, i.e. to decode a song of a complex time-frequency structure and 

infer hidden variables like the sequence of syllables and motifs, or even the fitness of the 

singing bird. In birds, the output and neuronal responses of the song generation system can be 

measured precisely at a microscopic level and this has resulted in a considerable body of 

experimental findings. Therefore, we used some of the key findings to assemble a complete 

model of birdsong generation and use it as the basis for constructing a potentially 

neurobiologically plausible, artificial recognition system based on state-of-the-art Bayesian 

inference techniques. This is described in detail in [11] and rehearsed here for completeness. 

We then use the birdsong model with some adaptations for speech recognition. 

2.1 A generative model of birdsong 

A birdsong consists of small units called notes (analogous to phonetic units in speech) which 

can be grouped together to form syllables [12]. A combination of identical or different 

syllables forms motifs. This hierarchical structure of song units is produced by two highly 

specialized song pathways [13]. In the motor pathway, the forebrain nucleus HVC includes 

specific neurons called HVC (RA) that project to nucleus RA. RA neurons innervate the vocal 

and respiratory nuclei to produce vocal output. Our modelling approach is based on the 

following key experimental observations: During birdsong generation, HVC (RA) neurons  

fire sequentially at temporally precise moments where each element of this sequence fires 

only once during the song to control a group of RA neurons [14-16]. This suggests that 

bursting HVC (RA) neurons select and drive the activity of subsets of RA neurons [14]. In 

particular, each RA neuron can be driven by more than one HVC (RA) neuron, see Figure 1. 

 

Figure 1: The scheme of HVC and RA dynamics. Five RA ensembles are controlled by eight sequentially 

activated HVC (RA) ensembles. The horizontal axis denotes time and the arrows describe the specific HVC 

ensemble that activates the corresponding RA ensembles. The color scheme matches the dynamics shown in 

Figure 2. Adapted from [11]. 
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How can one model such a mechanism? There have been several approaches to model the 

sequential activation of HVC (RA) neurons using single neuron models, e.g. [17]. Here, we 

follow an alternative way by capturing the neuronal mass activity using firing rate models, i.e. 

we consider model neurons that can be thought of as the synchronized firing activity of an 

ensemble of neurons. This is motivated by experimental evidence suggesting that there are 

about 200 co-active HVC (RA) neurons at a specific time during song generation [14]. One of 

the well established ways for modelling the sequential activation of neuronal ensembles is the 

winnerless competition using Lotka-Volterra type dynamics [6, 18]. This approach aims at 

modelling activity at a mesoscopic level, e.g. activity that may be expressed in local field 

potentials. 

When HVC (RA) ensembles undergo sequential activations, the RA level is driven from one 

attractor to the next. Such networks with attractor dynamics (Hopfield networks) can encode a 

large number of potential attractors because the forcing input from the HVC level effectively 

recombines subsets of RA ensembles in distinct assemblies. 

At the lowest level, we map the dynamical RA states onto motor neurons. To do this, we 

compute linear combinations of oscillators at different frequencies which represent the effect 

of currently active RA ensembles and create dynamical control signals for a model of the 

vocal organ, the syrinx [19]. This mathematical model of the syrinx has been used previously 

to model several birdsongs [20]. 

In summary, the present three-level hierarchical model generates sequences at its top (HVC) 

level, which are transformed into sequences of multi-dimensional attractors at the RA level. 

The model consists of hierarchically coupled stochastic, nonlinear, differential equations 

which are described in detail in [11]. The output of this system are vocal control signals which 

when used in the syrinx model generate a realistically sounding birdsong sonogram. 

2.2 Online Bayesian Recognition 

The inference is based on hierarchical message passing and implements a predictive coding 

scheme for dynamics. All the update equations of the recognition system (to reconstruct the 

hidden states) consist of differential equations (as in the generation model, see 2.1) and 

therefore may be implemented by neuronal populations and their network interactions via 

forward, backward and lateral connections [21]. In general, we assume that listening birds 

have internal models for the songs they have learned before and the generative model of the 

heard songs should fit to this internal model. Using this concept, we model optimal 

recognition using Bayesian inference for hierarchical, nonlinear dynamical systems [21]. For 

the sensory input, we assume that the vocal control signal given the sound wave, can be 

readily extracted by the listening bird (agent) from the spectrotemporal dynamics. Given this 

vocal control signal, we infer the hidden, spatiotemporal RA dynamics and the sequential  

HVC (RA) dynamics in an online fashion. The proposed Bayesian inference scheme  

provides, under some assumptions, optimal inference to decode the RA and HVC (RA) 

dynamics, i.e. to recognize the hidden messages embedded into the vocal control signal. The 

mathematical description is omitted here and can be conceptualized as follows:  At each time 

step t, the recognition system receives sensory input, here the current amplitudes of the vocal 

control dynamics. Like the generative model, the recognition system has three levels as well. 

Each of these three levels consists of interacting neuronal populations, which encode 

predictions, i.e. expectations, about how their internal dynamics will evolve during a song. At 

the same time, each level receives input from the subordinate level. For the first level, this is 

the sensory input, which is compared with the internal prediction. The prediction error is 

forwarded to the second level, where again predictions are used to generate prediction errors, 

which are forwarded to the third level. Critically, each level adjusts its internal predictions to 
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minimize its prediction error weighted by the prior precision of the internal prediction. At 

each level, the updated predictions are sent to the subordinate levels to guide their internal 

predictions by higher level predictions. In summary, each level minimizes its prediction error 

by a fusion of internal dynamics with top-down (predictions) and bottom-up (prediction error) 

messages. The overall result is that a listening bird fuses its dynamic and hierarchically 

arranged expectations about a song with the actual sensory input. Importantly, due to this 

dynamic fusion, the recognition is robust against deviations from its expectations by 

explaining away errors of the singing bird by internal precision-weighted prediction error. The 

derivation of the update equations to achieve Bayes-optimal online recognition solutions is 

non-trivial, see [21]. 

2.3 Extension to speech 

How can the model of recognizing birdsong be translated to human speech? In on-going work 

(paper in preparation), we will show that this is straightforward by removing the songbird-

specific, lowest level of the hierarchy described in section 2.1 and replacing the vocal control 

signal input by cochleagrams computed directly from sound waves. In addition, we have used 

the Bayesian filtering framework [21] to implement learning of cochleagrams. The weights to 

be learnt are the connection weights from the third to the second level (from the stable 

heteroclinic channel to the Hopfield network). We found that learning is easy. The intuition 

behind this finding is that the agent has an internal model which assumes (due to the stable 

heteroclinic channels) that the sensory input consists of sequences. Since this is the case for 

speech signals as expressed in a cochleagram, the only thing to learn is how each element of a 

sequence is expressed in the input, which is a relatively simple learning task. 

To provide for a proof-of-concept, we used an established benchmark test (taken from the 

Texas Instrument TI-46 isolated speech database, available from www.ldc.upenn.edu). There 

were five (female) speakers, speaking the digits from zero to nine, ten times, providing for, in 

total, for 500 isolated words. We computed from these words a cochleagram, and subdivided 

the frequency bands in six bands over which we averaged across frequency. This reduction of 

the data was done to keep computation time low.  

Classification of words proceeded as follows. For each digit word to be learnt, a specific agent 

was learned across different speakers (see below). Using a cross-validation approach, we used 

a subset of the ten trials for each speaker and digit as training data, while the classification 

was performed on the previously unseen remaining trials. As a classification measure, we 

simply used the accumulated prediction error, over time and neurons and used the argmin 

over all ten agents. 

 

3 Results 

3.1 Recognition of birdsong 

We found that the online recognition of simulated birdsong using the Bayesian filtering 

approach described above provided for rapid and accurate recognition. In Fig. 2, we show the 

recognition result for the high signal-to-noise ratio case (‘ideal communication’). It can be 
seen that all hidden states, at all three levels are reconstructed accurately. Note that this 

reconstruction is online, i.e. the recognition agent reconstructs on the fly. This simulation 

provides an example of how a bird may be able to extract multi-scale information from fast-

varying sensory input. In [11], we describe further simulations, which show that the proposed 

online recognition is robust against noise and unexpected perturbations. Furthermore, we use 
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simulations to address specific neuroscience findings, e.g. the cooling of HVC which has been 

found to slow down the song generation.  

 

Figure 2: Generated and recognizing dynamics for simulated birdsong. (Left) The causal states are shown on the 

left and hidden states on the right with arbitrary units both in time and neuronal activation. There are three 

levels: A) HVC (third) level, B) RA (second) level and C) Oscillator (first) level. At the HVC level, there are 

eight HVC ensembles (each represented with a different colour) which are activated for a short amount of time 

to control the dynamics of the five RA ensembles, see also Figure 1. At the second level (left column), the solid 

and dashed lines represent causal states, and the dashed lines represent the hidden states, also shown in the right 

column. The first level models the vocal control signals. The signals shown in the left column are the output 

dynamics which control the syrinx to obtain synthetic birdsong and are the input to the recognition. (Right) The 

format of the recognizing dynamics are the same as for the generated dynamics on the left. The recognition 

scheme receives only the output of the first level (bottom left) and reconstructs the hidden states at all levels 

using the online Bayesian inference scheme. It can be seen that the reconstruction is successful as there are only 

tiny deviations between the true (left) and the reconstructed (right) dynamics. Adapted from [11]. 

 

3.2 Learning and recognition of speech 

As described above, we translated the birdsong model to human speech cochleagrams and 

used an isolated word benchmark test to show that the model performs well in such a 

benchmark (paper in preparation). We found that, using the original sound waves as a starting 

point, and after learning, a collection of ten speech recognition agents could classify 98.4% of 

the test words, using a cross-validation procedure. When adding white noise to the sound 

waves, the performance was found to drop slightly but stayed reasonably high.  
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 Original Noise 30db Noise 20db Noise 10db 

Accuracy 98.4 % 96.4 % 95 % 88.8 % 

Table 1: Recognition rates using the digit words from the Texas Instrument TI-46 isolated speech database. Each 

entry lists the recognition rate determined using a cross-validation procedure. To achieve different signal-to-

noise ratios, we added white noise with different variances to the original sound wave data before computing the 

cochleagrams (see text). 

 

4 Discussion 

We have described a novel artificial recognition algorithm for both birdsong and speech. The 

algorithm is based on the application of Bayesian filtering to hierarchically structured, 

stochastic, recurrent neural networks [10, 11]. The results show that fast sensory input 

dynamics can be tracked and mapped, in an online fashion, to hidden states, see Figure 2. 

These reconstructed hidden state dynamics of the recognition agent represent the states of the 

generating agent which caused the sensory input. In other words, the recognition agent can 

infer from the sensory input on the hidden states of the sender in an online fashion, which is 

an effective way of communication. Remarkably, this scheme works across multiple levels 

and may be the basis for the multi-scale recognition performance of the brain. We also found 

the scheme to be robust against noise and perturbations. 

When applying this scheme to an isolated word data set, we found that we can learn and 

recognize at high performance, see Table 1. We expect that we can improve these recognition 

rates further, because we, for computational reasons, had to reduce the cochleagram to just six 

frequency averages (out of eighty) for each time point. It remains to be shown whether the 

present recognition system can be scaled up to larger speech data bases and can perform 

continuous speech recognition as required for artificial speech recognition.  

Interestingly, the concept underlying this recognition scheme is very similar to the 

conventional hidden Markov model (HMM): It is assumed that speech is a sequence like 

‘beads on a string’ [22]. However, there are critical differences, which help to overcome some 

difficulties with the HMM in the application to speech: (i) the present recognition system uses 

nonlinear dynamical system as a basis. This means that parameters do not encode directly 

transition probabilities between discrete states but rather describe a transient sequence of 

saddle points. This makes the model parameterization much more parsimonious than as in 

HMMs because the generating dynamics only need to describe the sequence of saddle points 

but not exactly how to get from one to the next: The passage between saddle points of the 

stable heteroclinic channels (HVC level in Fig. 1 and 2) is implicitly described by the 

nonlinear dynamics. (ii) For the same reason it is not necessary to split speech data in fixed-

length or variable-length data chunks because the model is continuous and appropriate for 

continuous data like speech sound waves. For example, with the isolated word data set 

(section 3.2), we arbitrarily chose reference points between saddle points and specific time 

points in the cochleagram but did not segment the data themselves. (iii) Vocal tract 

movements have slow components which modulate speech dynamics across multiple time 

scales. Although we have not modelled these effects here, nonlinear dynamical systems may 

be ideal to model such effects because modulation of on-going dynamics by previous 

dynamical events is naturally expressed in nonlinear dynamical systems as a perturbation of 

states. Specifically, the induced changes may be explained away by the on-going dynamics 
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but, in principle, do the cross-temporal interactions do need to be modelled by additional 

parameters as in HMMs. 
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