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Abstract: In this paper, we investigated the recognition performance on speech dis­

torted by noise with unknown characteristics, as found in many real­world situations. 

Speech recognition performance is notably degraded when used in conditions with 

mismatched test and training speech data. Various methods are proposed to overcome 

this  problem  for  wide  range  of  speech,  speaker,  channel  and  environmental 

conditions. The investigations presented in this paper, uses the UASR (Unified Auto­

matic  Speech Recognition and Synthesis)  system to create  and compare acoustic 

models regarding the noise robustness: model trained on clean speech data, model 

trained with multi­condition (M­C) noisy data and clean model adapted on (M­C) 

noisy speech data. The noise robustness of the models was investigated by phoneme 

recognition on speech data with added noise of certain type and SNR levels as well 

as noise of unseen characteristics. It was shown, as it was expected, that there is sig­

nificant recognition performance degradation for the clean speech model, while the 

M­C trained model achieved the best possible recognition performance compared to 

others. It was observed also, that the adapted model could be successfully used for 

noisy speech recognition without the need of large amount of adaptation data. 

1 Introduction

Speech  recognition  performance  is  notably  degraded  when  used  in  conditions  with  mis­

matched test and training speech data. Various methods are proposed to overcome this issue 

for wide range of speech, speaker, channel and particularly environmental noise conditions. 

Generally, two different groups of noise robustness algorithms have been developed: noise fil­

tering or speech enhancement and noise or environment compensation [1]. 

In the first  group, after  the standard feature analysis  in the ASR's front­end (like PLP or 

MFCC [2]), various noise suppression methods could be used: Spectral Subtraction (SS) [3], 

Wiener filtering [4] and Minimum Mean Square Error Estimation (MMSE) [5], each of them 

assuming the availability of a priori knowledge of the noise spectral characteristics. 

In the second group, noise compensation methods could be used in the acoustic modeling 

phase.  Multi­condition  (M­C) training  is  used  to  compensate  the  mismatched testing  and 

training  conditions  and  improve  the  recognition  accuracy in  acoustic  noisy environments 

through the use of representative training data regarding the noisy conditions [6]­[9]. When 

no information about the noise characteristics is available, then, artificial noise with various 

characteristics and different values of SNR might be used for M­C training [10].

Model adaptation [11] is used when small amount of multi­condition speech data is available 

that cannot be used for complete model training. Parallel model combination (PMC) [12] cre­

ates noisy acoustic model from existing clean model by incorporating a statistical noise mod­

el.  SPLICE (Stereo based Piecewise Linear Compensation for Environments) [13]  produces 

an estimate of the  corruption characteristics given the observed distorted speech  cepstrum, 

while assuming the existence of stereo training data. Typically, the acoustic models are trained 
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firstly  on  clean  speech  data  to  provide  high  quality  models  that  could  be  used  later  for 

adaptation.  On  the  other  hand,  multi­condition  training  uses  additive­noise  contaminated 

speech training data to provide coarse compensation for the training and test data mismatch. 

Conventional adaptation methods like Maximum a posteriori (MAP) [14] or Maximum Like­

lihood Linear Regression (MLLR) [15] are commonly used separately or in combination with 

noisy adaptation data. The MLLR algorithm performs good when smaller amount or sparsely 

populated adaptation data is available, while MAP requires larger amount of data for the same 

performance level. The used MAP algorithm updates the trained acoustic model parameters 

by joining the old with the new statistics parameters derived from the adaptation data. 

Training or adaptation with specific noise type and level significantly improves recognition 

performance when the recognized speech is affected by similar conditions, but it degrades 

when training and recognition noise types do not match. If the training is performed with a 

variety noise types and levels, the robustness and the performance are both improved.  The 

procedure is simple and most effective, but very time consuming and requires large amount of 

carefully collected and prepared training data. 

In this paper, speech recognition in noisy environments was investigated in case when the ac­

curate estimation of the noise type and characteristics is not possible. An UASR (Unified 

Automatic Speech Recognition and Synthesis) [16] system was used for model training and 

adaptation. The created acoustic models were compared regarding the noise robustness: model 

trained on clean speech data, model trained with M­C noisy data and clean model adapted on 

M­C noisy speech data. The robustness of all three models was investigated by phoneme re­

cognition of speech data with added noise of certain type and level as well as noise of unseen 

characteristics. 

The  remainder  of  the  paper  is  organized  as  follows,  in  Section  2  description  of  the 

experimental  framework including the used noise type's  characteristics and the adaptation 

algorithm is given. Next section presents the ASR system, acoustic modeling, the used speech 

databases and the results of the experiments carried for speech recognition. The last section 

summarizes the overall performance and concludes the results along with future directions for 

improvement.

2 Noise influence and model adaptation

2.1 Effects of additive noise 

Additive noise affects the speech recognition due to mismatch between training and recogni­

tion speech data in the feature representation domain and also to its randomness which cause 

speech information loss. Speech recognition performance degrades, because the clean acous­

tic models do not model the noisy speech accurately. The majority of the noise robust speech 

recognition methods are focused on reducing this mismatch. Also, the information loss caused 

by noise introduces degradation even in the case of optimal mismatch compensation. Detailed 

analysis is given in [17] about the additive noise effects on the feature vectors parametrization 

and the probability distributions. 

It is assumed, that the speech and noise signals are uncorrelated, that they could be linearly 

combined in spectral domain and that the convolution noise is not considered. The output en­

ergy of the filter i in the filter bank at frame t, corresponding to the noisy speech Yi(t) can be 

written as a function of the energy of the clean speech Si(n) and the noise Ni(t):

Y i(t)=S i(t)+N i(t ) (1)

and the relation in the log domain x i=log (X i) is described by the equation:
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y i(t)=log [exp(xi(t))+exp (ni(t))] (2)

Therefore, the effect of the additive noise consists of a nonlinear transformation of the repres­

entation space in the log domain which produces a mismatch between the clean and the noisy 

conditions. Generally, in the feature extraction domain the additive noise: 

• produces a non­linear distortion of the representation space;

• masks the speech signal in the regions where noise level is greater than speech level 

and the log­energy of the noisy speech is similar to that of the noise; 

• slightly affects the noisy speech where the speech level is greater than noise level;

• affects static features (especially energy) more than dynamic features.

and the additive noise effects on probability distributions:

• causes a displacement of the mean values;

• the standard deviation is reduced due the non­uniform compression caused by noise;

• the noisy pdf is distorted and it is not a Gaussian distribution due to the non­linear ef­

fect of the noise. 

In order to see the separate contribution of the effects, information loss and the model mis­

match,  speech  recognition  experiments  should  be  performed  on  clean  acoustic  models 

(baseline) and M­C retrained model. The degradation for the phoneme recognition perform­

ance on M­C models is related to the information loss caused by noise, while the recognition 

performance degradation on clean acoustic model represent the degradation due to both, the 

clean and noisy condition mismatch and the information loss. 

2.2 Model adaptation

The MAP adaptation method [14] updates the HMM model parameters by joining known in­

formation  (the  old  parameters)  with  the  statistics  derived  from the  adaptation  data.  The 

adaptation  process  consists  of  two  stages.  In  the  first  step,  the  statistics  required  for 

computing the distribution weight, mean and covariance are gathered. The mean value µ̃j (3) 

and covariance matrix elements Σj̃(x,y) (4) of a Gaussian distribution j, over Nj adaptation data 

samples on,j, are calculated from the following statistics:

 μ̃j=
1

N j

⋅∑
n=1

N j

on , j (3)

Σ̃i(x , y )=
1

N j−1 (∑
n=1
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In the second step the statistics from adaptation data are combined with the old statistics from 

the HMM model  using data­dependent  weighting coefficient.  The data dependency is  de­

signed to weight the statistics with higher population toward new parameters and with lower 

population toward the original parameters. The new mean (5) and covariance (6) for the distri­

bution j presents weighted sum of the old and the new statistics:

μ̂ j=
n j
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The data­dependency of the weighting coefficients is realized by the relevance factor ρµ and 

ρΣ. Theirs values mark the points where the data count of the adaptation data has the same 

weight as the old parameter. Higher values of ρ give more weight to the prior information,  the 

old parameters. The main problem with the MAP adaptation method is that it is an uncon­

strained method and updates therefore only those parameters where observations exist. It re­

quires a relatively large amount of adaptation data in order to be effective for sparsely occu­

pied Gaussian distributions. 

3 Experimental setup

UASR is a speech dialogue system with synthesis and recognition components that uses com­

mon databases. The system uses arc­emission HMM with one single Gaussian density per arc 

and an arbitrary topology. The structure is built iteratively during the training process by state 

splitting from an initial HMM model [16]. The advantage of these structures as a underlying 

concept lies in their enhanced capability of modeling trajectories in the feature space. 

The following system setup was used for the experiments. The clean and noisy speech signals, 

sampled at rate of 16 KHz and 16 bits per sample, were divided in 32 ms wide frames with a 

frame period of 10 ms and processed with a Hamming window. The band from 300 to 8000 

Hz was covered with 31 Mel DFT filters and at the output of each channel the log of the 

energy was computed. The obtained feature vectors and theirs delta values were standardized 

to a mean of zero and standard deviation of one, giving a final feature vector with dimension 

of 60. Principal Component Analysis (PCA), as an orthonormal transformation that provides a 

linear mapping for dimension reduction and de­correlation, was used to bring the number of 

components to 24. The effectiveness of PCA in pattern recognition lies in its ability to de­

correlate feature parameters and relegate most of the random structures (noise) to trailing 

components  while  extracting  systematic  patterns  to  leading  ones.  The  acoustical  model 

consists of 42 monophonic models, one pause model and one garbage model. The structure is 

built iteratively during the training process on clean and noisy speech by state splitting from 

an initial HMM model in 2 splits, therefore giving 12 Gaussian distributions per phoneme or 

in total 516. 

3.1 Databases and acoustic modeling

For the acoustic models training and evaluation, small data subset of 1537 turns with total 

duration of around 3 hours 34 min from the CD 2.0 of Verbmobil German Database [18] was 

used. The test set consists of 70 sentences (with 577 seconds) and the training set of 1396 sen­

tences (with 11624 seconds). The development set with 71 sentences (659 seconds) was con­

taminated with M­C additive noise (4 sentences per noise type and level). Firstly, the training 

set with clean speech was used to produce baseline clean acoustic model with two splits from 

the initial HMM model. Then, the same speech database contaminated by additive noise with 

equal type and SNR level contribution (~70 sentences per type and level) was used for the  

M­C model training in the same way as for the clean model. Afterward, the clean model was 

adapted using MAP algorithm on the M­C development set. The performances of the models 

were evaluated and compared in phone recognition experiments, because this is of fundament­

al importance as they reveals the quality of the acoustic modeling. 

3.2 Noise types used for M-C training and adaptation data

For the purpose of speech recognition on baseline (clean),  retrained and adapted acoustic 

models, multi­condition training data set was prepared. It consists noisy speech samples of 

four different spectral characteristics ("babble", "factory", "volvo", "white") and clean speech 

with four SNR levels (5, 10, 15 and 20 dB), taken from the NOISEX­92 database [19]. 
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A non­stationary noise example ("buccaneer") is also used in the experiments as unknown 

noisy  environment  condition  included  neither  in  the  training  nor  adaptation  process.  

The different noise type's spectral characteristics are presented on Figure 1. It could be no­

ticed, that in all cases the additive noise covers the whole available bandwidth except in the 

case of noise type "volvo". Here, significant noise signal energy is spread in narrow part of 

the  lower  frequency band,  where  only small  part  of  the  speech  bandwidth  is  distorted.  

The added "volvo" noise signal distorts the speech waveform significantly due to the large 

signal amplitude, but only for lower frequencies, therefore the phoneme recognition will be 

lesser affected compared with other noise types. 

a. white b. babble c. volvo d. factory e. buccaneer

Figure 1 ­ Spectrograms of the noise used for M­C data creation (a­d) and unseen noise (e)

In order to precisely combine the additive noise with the clean speech signal, the gain para­

meter  g was used to compensate the difference in the signal energy levels. To compute the 

value of g, desired SNR value of the noisy signal could be used as in (7). 

SNR=10log10( g
2⋅P s

Pn
)  giving g=10

SNR

20 ⋅√ Pn

Ps
 (7)    or  g≃

Psn−Pn

Ps
(8)

In (8), another formula to estimate the gain parameter is shown, where,  Psn is the power of 

noisy signal, Ps and Pn are the power of the clean and noise signals, respectively. Therefore, 

the M­C data set consists of 5 different noise types with 4 SNR levels, giving 20 different ad­

ditive noise environmental conditions.

4 Experiments on UASR

The UASR system was used for phoneme recognition performance evaluation in order to 

show the effectiveness of the acoustic features modeling. The evaluation parameter accuracy 

of the recognized label (phoneme) sequence (LSA) was calculated by the number of all phon­

emes in the reference sequence  Nall, removed phonemes  Ndel, substituted phonemes  Nsub and 

the number of inserted phonemes NIns. These numbers are calculated with sequence alignment 

using Levenshtein distance (9):

LSA(%)=1−
(Ndel+N

ins+N
sub)

N
all

⋅100 (9)

On Table 1 the phoneme recognition results are presented. First, the small test set of VM2 

database consisted of 70 clean speech sentences with total duration of 577 seconds was used 

to evaluate the baseline performance of clean, M­C and adapted acoustic model. Then, test 

data contaminated with each noise type ("babble", "factory", "volvo", "white") and level (5, 

10, 15 and 20 dB) was evaluated and the results were averaged in order to make comparison 

between all three used acoustic models.
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Average (20-5 dB) Clean White Babble Volvo Factory Buccaneer Average

Clean model 46,10 19,65 20,18 44,13 26,63 22,63 26,64

M-C model 43,10 27,45 31,90 42,88 32,48 27,85 32,51

Adapted model 40,30 24,90 32,43 42,38 32,20 24,68 31,32

Table 1 ­ Recognition results for Label Sequence Accuracy (%)

From Table 1 it could be seen that, the M­C trained acoustic model provides largest phoneme 

recognition accuracy over all seen and especially for the unseen noise conditions.  The 95% 

confidence interval is in the range between ± 1,1 % and ± 2,9 % for all results presented in the 

table. On Figures 2, 3 and 4 the evaluation results are presented for each acoustic model with 

included noise samples ("buccaneer") unseen in the training process. Generally, it could be 

noticed that "volvo" noise has smallest influence on the recognition performance of all evalu­

ated acoustic models. Because of its spectral characteristics, only small portion of the band­

width is corrupted and thus few feature vector components are affected. As seen in Figure 2 it 

is clear that the recognition performance for the other conditions decreases regarding the SNR 

level, with "babble" noise recognition performance decreasing steeper for lower SNR values.

 

Figure 2 - Phoneme recognition performance on Clean Acoustic Model

Figure 3 ­ Phoneme recognition performance on M­C Acoustic Model

Figure 4 ­ Phoneme recognition performance on Adapted Acoustic Model

20 15 10 5

0

10

20

30

40

50

Clean Acoustic Model

White

Babble

Volvo

Factory

Buccaneer

Clean

SNR (dB)

L
S

A
 (

%
)

20 15 10 5

0

10

20

30

40

50

Multi-Condition Acoustic Model

White

Babble

Volvo

Factory

Buccaneer

Clean

SNR (dB)

L
S

A
 (

%
)

20 15 10 5

0

10

20

30

40

50

Adapted Acoustic Model

White

Babble

Volvo

Factory

Buccaneer

Clean

SNR (dB)

L
S

A
 (

%
)

78



It is shown on Figure 3 for the M­C acoustic model, that in the case of "babble" and "factory" 

the recognition accuracy is more improved compared against "white" and "buccaneer" noise 

conditions. The reason is that the model is better trained on the specific spectral characterist­

ics of these noise conditions. While for the "volvo" condition there is a slight performance de­

crease, almost equaling the results for clean speech recognition on M­C acoustic model.

The experimental results for the adapted acoustic model presented on Figure 4, shows that the 

difference in accuracy improvement for "babble" and "factory" is even more notable and here 

the performance results for "volvo" also surpasses the results on clean speech. This proves 

that using small amount of development speech data contaminated with M­C noise to adapt 

clean speech acoustic model could improve the recognition performance for all, particularly 

for those noise conditions with distinctive spectral characteristics.  In all  cases, the unseen 

noise condition "buccaneer" produces similar results as "white" noise condition, due to their 

spectral characteristics similarities. 

SNR
LSA (%) Relative improvement (%)

Clean M-C Adapted M-C Adapted

20 dB 36,42 37,84 37,64 3,899 3,350

15 dB 29,58 34,92 33,82 18,053 14,334

10 dB 22,82 30,98 29,28 35,758 28,309

5 dB 17,74 26,3 24,52 48,253 38,219

Table 2 ­ Relative performance improvement (%) of M­C and adapted model

Table 2 presents the relative improvement of the M­C and adapted model regarding the recog­

nition performance on clean model. It is obvious that M­C model provides larger improve­

ment compared to the adapted model, despite the difference is small. But, the adapted model 

was created using very limited amount of speech data in significantly shorter time. The 95% 

confidence interval is in the range between ± 1.1 % and ± 2.9 % for all results presented in the 

table.

5 Conclusions

The speech recognition performances were evaluated over various noise types and SNR levels 

as well as for unseen noise characteristics. It was shown, as it was expected, that there is a sig­

nificant degradation of the recognition performance in the case of acoustic model trained on 

clean speech. The multi­condition trained acoustic model, achieved the best possible recogni­

tion performance as compared to the other two models: clean and adapted. Also, it was shown 

that the adapted model could be also successfully applied with slightly lower recognition ac­

curacy, but without the need of large amount of adaptation data. Further improvements of the 

phoneme accuracy rate could be achieved by using additional speech enhancement methods 

combined with the noise compensation algorithms.  The overall  performance for unknown 

noisy conditions could be improved with careful preparation of the M­C data set for training 

or adaptation where it will consists of as many as possible noisy speech samples and SNR 

levels derived from real noisy environments.
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