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Abstract: One potential area for improvement in continuous speech recognition is

the modelling of phoneme transitions (not transition probabilties) arising from the

non-stationarity of speech: refined models can then be used to compute probabil-

ity distributions which can serve as emission probabilities for HMM-based speech

recognition systems. In this paper we present our approach to improving phoneme

transition modelling. Building on our previous work, we employ a phoneme par-

tition approach (SME: start, middle, and end states) to build a structure of support

vector (SV) classifiers as our main discriminative method. For the phoneme clas-

sification step, cross correlation features based on MFCC-vectors are computed

and classified within the SME structure. Additionally, we make use of a spe-

cial reproducing kernel build upon the correlation features, thus offering a direct

integration into the SV classifiers. This paper discusses the computation of the

afore-mentioned probability outputs as well as initial results using these outputs as

emission probabilities in HMMs representing phonemes, applied within a standard

speech recognition system.

1 Introduction

Continuous speech recognition can be broken down into a number of connected problems,

among them phoneme classification, modellation of both the transitions within and between

speech sounds such as phonemes and of the correspondences between the acoustic signal

and elements of natural language. Concepts like HMMs have long been in use for speech

recognition and phoneme classification; in recent years, systems have been influenced for

instance by generative models like GMMs [15], maximum a posteriori adaptive sequence

estimation [7], discriminative methods [19] and along with the latter the theory of reproducing

kernels (RKs) and reproducing kernel Hilbert spaces (RKHSs). In the context of RKs, sequence

kernels [6] have been developed, aiming at capturing the non-static nature of processes such as

speech or even modelling HMMs (see [17], pp. 430–436). The same holds for previous hybrid

concepts combining SV classifiers and HMM methods ([10], [11], [2]). Such progresses as

well as the success of often sophisticated RKs capturing the specific nature of certai tasks or

data structures motivate our approach.

A disadvantage of many current classification models is, despite the characteristic of frequently

used MFCC-features, the failure to account for the transitional aspects of the nature of speech

signals; human speech is not a sequence of stable phonemes but rather a constant process

of moving from one speech sound to another. In contrast to other methods modeling the

non-stationarity such as LDA, our concept will break the restriction of linearity, making use

of in general non linear reproducing kernel methods. Again, individual phonemes are greatly

influenced by their phonetic context, and one goal of our work is to model intra-phoneme
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transitions. Toward the first end, we partition phoneme samples to induce a tristate Start-,

Middle- and End (SME) model of phoneme transitions. This was introduced in [5] along with

a a method for integrating cross-correlation features, developed in the SME context, into a

reproducing kernel, thereby reducing feature-computation and connecting similarity/distance

(used for classification) directly to the used features. The model is implemented with an

array of pairwise binary support vector (SV) classifiers, following the afore-mentioned SME

structure. Toward the second end, we will integrate this into a common HMM based speech

recognition system, interpreting the SVMs output in a probabilistic context.

The paper is organized as follows. Subsequent to a brief review of reproducing kernels and

support vector machines, section 3 summarizes the ideas presented in [5]: SME-structuring of

SV classifiers, based on a partition of phoneme samples in the spirit of tristates. The paper also

introduces a method for integrating certain cross correlation features, developed and proposed in

this context, into the reproducing kernel. A short discussion of SVM-based probability outputs

and their usage in multiclass classification tasks follows in section 4. Section 5 gives details

on the integration of the posterior probabilties and their integrations into the Millenium ([20])

speech recognition system. Finally, part 6 describes our experiments.

2 Reproducing Kernels and SVMs

2.1 Reproducing kernels

The concept of reproducing kernels is based on the fact that any Hilbert space H on a set X

of complex-valued, bounded functionals endowed with an inner product ⟨·, ·⟩ admits a mapping

k : X ×X → C such that for all z ∈ X :

(1) k(·,z) ∈ H (2) ∀ f ∈ H : f (z) = ⟨ f ,k(·,z)⟩ .

k is called a reproducing kernel and is unique within H . It is easily verified ([3], [16]) that

RKs defined as such are positive definite (pd). Conversely, for every pd mapping k : X ×X →C

there exists exactly one H ⊂ C wherein k is a RK. Property (2) is called the reproducing

property as the kernel reproduces the evaluation of the functional f ∈ H using the Hilbert

space’s inner product. Given such a k, the factorization lemma ([1]) furthermore implies the

existence of a function Φ : X →H such that k(x,z) = ⟨Φ(x),Φ(z)⟩. Interpreting Φ as a feature

mapping, reproducing kernels thus can replace potentially costly computations of Φ or inner

products. Well known examples are the linear kernel kl(x,z) = xT z, the polynomial kernel

kpd(x,z) = (xT z+r)d and the exponential kernel ke(x,z) = exp(−γ ||x− z||2). Kernel functions

are not generally restricted to numerical representations. Areas such as bioinformatics or part-

of-speech-tagging make extensive use of kernels defined on strings or on more complex data

structures like trees.

2.2 Support Vector Machines (SVMs)

Given a linear separable two-class dataset, SVMs compute a hyperplane w separating the two

classes. The hyperplane is optimal in the sense that, amongst all hyperplanes separating the

data, it has minimal margin, that is the distance from w to any (training) sample. Let H be an

N-dimensional Hilbert space, M be the number of samples. Writing x = (x1 · · ·xN) for x ∈ X

and n = 1, . . . ,N, let w ∈ H and x1, . . . ,xM be vectors in X . With b ∈ R being the bias or

offset, {⟨w,x⟩+b = 0 |x ∈ H } is a subspace and hyperplane in H with normal vector w. The

dot product equals the length of the projection of either component onto the direction of the
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Figure 1 - Partitioning and clustering of N samples of class ae.

remaining one.

The orientation of the hyperplane, d(x|w) = sgn(⟨x,w⟩+b) , serves as a decision criterion: For

target labels ym ∈ {±1}, where m = 1, . . . ,M, the products ym · d(x|w) classify samples x into

either class 1 or −1. The optimization problem of finding the hyperplane is subject to one

constraint for each training sample: ym · d(x|w) ≥ 1,m = 1, . . . ,M. To achieve better general-

ization, it has been proposed ([4] and, later [8]) to relax the constraints by introducing slack

variables ζm ≥ 1, m = 1, . . . ,M. Using Langrangian multipliers αm, m = 1, . . . ,M to optimize

under those constraints, the final dual form of the optimization problem permits the substitu-

tion of the objective function’s inner product by a RK k. The new decision function now is

d(x|w) = ∑M
m=1 αmymk(w,xm)+ b = 0. As the dimension of the RKHS depends on the RK,

data can be linearly separable in the RKHS even if this is not the case in the original space. For

multiclass SVM cases, one-vs-one or one-vs-all strategies are commonly used, see [18] or [16]

for details.

3 Linear mapping kernel and SME-structure

In [5], based on new correlation features and the concept of tristate phoneme representation,

initial steps were taken towards continuous speech recognition using SVMs as a main classifier.

We furthermore aimed at adjusting the kernel to the features while leaving the SV optimization

problem as simple as possible. Both the correlation features and the specific classifier structure

proposed capture transitional aspects (information between speech frames). A RK that

integrates the correlation mapping of the features from the MFCC vectors computed from the

phoneme samples is derived. The SV optimization itself remains untouched and does not suffer

from additional complexity.

We start by computing standard MFCC features of phoneme samples, with the number of fea-

tures per training sample dependent on its length. They are grouped classwise and partitioned

into the above mentioned sections Start-, Middle- and End. Subsequently, representative cen-

ter vectors are computed. Dropping class information, they are denoted by cs,cm and ce. Our

features are build from those center vectors by correlation with training data, see figure 2 for

details. Figure 1 illustrates the process for phoneme ae. Training samples themselves are split

into up to seven SME-based states: SSS, SSM, SMM, MMM, MME, MEE and EEE. They rep-

resent the time position in a phoneme sample. Figure 3 illustrates which 3-vector sequences

contribute to which training set.

For the integration of the correlation mapping into the RK, consider a linear mapping T :

H → HT (not necessarily cross correlation) between a finite dimensional Hilbert space H

and a Hilbert space HT , in [5] we showed that for any p,q ∈ H

⟨(p,T p),(q,T q)⟩G(T ) = ⟨p,(wH I +wHT
T ∗T )q⟩

H
, (1)
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Figure 2 - Componentwise computation of the cross correlation features. The ×-symbol denotes the

correlation operation. L is the size of the feature vectors, n the frame index of training data m.

Figure 3 - Phoneme sample comprised of 13 MFCC-vectors/ frames and its SME-partitions. Two vector

sequences will contribute to the phoneme specific classes SSS and EEE, three to MMM and one to SSM,

SMM, MME and MEE.

is positive definite for weights wH ,wHT
∈ R+ and thus defines a RK kT . Important is that the

new Kernel and the Hilbert space H are defined on the same set, thus allowing its use in kernel

combinations such as addition or composition. In our work we apply the letter operation by

composing the transform specific with the rbf kernel: ke ◦ kT .

As an example for our setup where T realizes the correlation mapping of MFCC-vectors and

center vectors as described above, consider a point of time at which a sequence of three MFCC

vectors covers the current phoneme position (=state) SSM, respectively. For one component

1, . . . ,L within equation (1) we then get, omitting the component’s index,

T ∗Tssm =





2c2
s + c2

m 2cs + cscm cscm

2cs + cscm 2c2
s + c2

m 2cs + cscm

cscm 2cs + cscm 2c2
s + c2

m



 .

The motivation for the correlation features is twofold: It measures similarity to a certain degree

and modells class (or phoneme) specific transitions with representative center vector and works

as a smoothing lowpass filter, lessening distortion and noise effects.

On the way to the greater goal of using discriminative classification within probability models

like HMMs, we continue by following ([13]), using an improved version of Platt’s approach

([14]), computing parameters of a sigmoid probability distribution by approximating the deci-

sion boundaries of the pairwise SV classifiers. Subsequently, we continue pursuing the track of

[21]: Based on the sigmoid parameters and functions, prior probabilities for previously unseen

samples in a multiclass setting are estimated. The theoretical background is given in the next

section.
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4 Probability outputs for SVMs

4.1 The binary case

Let i = 1, . . . ,N enumerate the trainingset, y,yi ∈ {+1,−1} be class labels and N+, N− denote

the number of training samples of the respective classes. Furthermore, x,xi ∈ R
n are test ex-

amples and f (·) the decision function of a binary SVM. Platt ([14]) approximates posterior

probabilities based on f (·) by a sigmoid function

Pa,b( f (x)) :=
1

1+ exp(a f (x)+b)
≈ p(y =+1|x).

Writing pi := Pa,b( f (xi)), the parameters a,b are determined by

minimize

a,b ∈ R
−

N

∑
i=1

[ti log(pi)+(1− ti) log(1− pi)] (2)

and

ti =

{

N++1
N++2

yi =+1
1

N−+2
yi =−1

, i = 1, . . . ,N.

[13] propose rewriting the summand of problem (2) as

[ti log(pi)+(1− ti) log(1− pi)] (3)

= (ti −1)(a fi +b)+ log(1+ exp(a fi +b)) (4)

= ti(a fi +b)+ log(1+ exp(−a fi −b)) (5)

to address two major sources of numerical problems in Platt’s algorithm: By substitution of

1− pi (original version (3)) by either form (4) or (5), depending on the signature of a fi+b, they

avoid numerical cancellation. The authors achieve sound stability and in line with this better

classification results.

4.2 Multiclass classification tasks

In the case of multiple classes, in [21] various existing methods are discussed and two new

proposed, the second of which we use in this work. Let ri, j be the pairwise class probabilities

computed by evaluating the sigmoid functions using parameters a,b and pi = P(y = i|x), i =
1, . . . ,N be the sought estimates. Denoting the solution as a vector p of multi-class probability

estimates, the authors prove that solving the optimization problem

minimize
p

N

∑
i=1

N

∑
j ̸=i, j=1

(r j,i pi − ri, j p j)
2 (6)

s.t.
N

∑
i=1

pi = 1

guarantees a unique solution. The classification decision function simply is

argmaxi(pi). (7)

The algorithm boils down to solving a system of linear equations using Gaussian elemination

or, with small modifications to meet the preliminarity of positive definiteness, Cholesky factor-

ization – for details, the reader is referred to the above mentioned paper.
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5 From phonemes to utterances: Posterior probabilties and HMMs

We now move beyond straight phoneme classification to continuous speech recognition. The

major contribution of this paper is the integration of our SME- and classifier net based structure

into common systems for continuous speech recognition and the evaluation of the classification

quality of the new architecture: The priors are transformed into posterior probabilities using

Bayes’ Rule to serve as phoneme emission probabilities in an HMM-based system.

Section 6 gives details on the setup for our experiments. For now it suffices to say that

they are conducted on MFCC-vectors extracted from the TIMIT data set. Following [12],

we reduced the amount of classes to 38 by merging similar ones. Dealing with continuous

speech, several decisions have to be made about both the process of training and the setup of

the final recognizer. While focusing on important characteristics of the SME-concept, we also

want to keep things comparable to standard methods by adopting a certain amount of common

consense. For our inaugural experiments we thus aim at being as close as possible to a standard

tristate setup for individual phonemes.

In a first step, the up to seven (or even eight, including the three-frame SME-state) states, are

reduced to three representative states, serving directly as the (usual) tristate representation of

phonemes within HMMs. Due to space constraints, the details are not presented here; however,

let us mention that given both the different distributions of phoneme lengths amongst the classes

and the larger amount of the states SSS, MMM, EEE compared to SSM, SMM, MME, MEE by

construction, both the number of samples of different states within the classes themselves and

the number of samples of the same state for different phonemes are subject to great variance

and are considered in the process.

For M classes the respective set of 3 ·M · (M − 1)/2 pairwise SV-classifiers for the new set

of states is computed, followed by the estimation of the parameters for the sigmoid probabil-

ity functions on the validation set. Given an observation ω and classses m = 1, . . . ,M, the

multiclass prior probabilities p̃ = p(ω|m,si
m) for each of the 3 ·M decision values can now be

approximated. Applying Bayes’ Rule we compute the postertior probabilities for the speech

decoder to get the probability for each class and state given the observation ω ,

p(m,si
m|ω) =

(

(p(m = 1,s1
m=1|ω), · · · p(m = M,s1

m=M|ω), · · · · · · , p(m = M,s3
m=M|ω)

)T
. (8)

For each observation, M such posterior probability vectors are computed. We apply a simple

linear combination, which is potentially suboptimal w.r.t distribution considerations, but guar-

antees, that the resulting vector is a probability vector again. The coordinatewise negative log

likelihood is finally used within the HMMs of the millenium speech recognition system.

6 Experiments and results

We conclude the paper with initial results. MFCC-vectors were extracted via HTK3.3 with a

framesize of 25ms and an overlap of 10ms. Training of the SV classifiers was performed on

extracted phonemes of all si and sx utterances of the TIMIT dataset, using a modified version of

svmlight ([9]), using the RK derived in section 3, using equal weights wH =wHT
= 0.5. (see eq.

(1)) within the transform specific kernel. For computing the probabilities, the training set is split

using 70% for training of the SVMs and the remaining 30% to serve as data for the estimation

of the parameters a,b of the sigmoid functions. Leave-one-out cross validation is applied to

reduce the biasses originating from the training data. A first evaluation was performed on a

subset of the TIMIT phonemes that offers both similar and distinct sounds. Table 1 shows the

results that motivate advancing to continuous speech recognition.
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SVM Prob SVM SVM GMM 16

70 70 100 3frame MFCC MFCC

aa 90.03 88.80 90.40 69.26 65.89

ae 84.17 85.17 86.08 59.79 49.81

ay 85.11 87.46 87.60 52.22 49.94

eh 79.43 77.59 82.69 44.22 37.46

ey 81.47 83.02 85.37 56.39 48.61

ih 74.19 74.85 78.38 37.82 30.00

ix 69.31 70.55 73.38 47.63 37.59

iy 93.92 94.79 95.68 77.44 71.50

n 95.87 96.31 96.28 88.63 82.42

s 95.52 94.11 95.66 88.43 70.35

z 52.97 63.44 63.35 42.50 59.93

avg. 82.00 83.28 84.95 60.39 54.94

Table 1 - Recognition rates. The first column represents SME-feature based SVM-classification results

averaged over the results for the individual states. Column two gives an impression of the outcome

using the multiclass posterior probabilities described in sections 4.2 and applying Bayes’ Rule. Columns

three and four depict the recognition rates presented in [5]: SVM-classification using standard MFCC

vectors over three frames (for reasons of fair comparison) without ∆, ∆∆ and classification rates using

GMMs with 16 gaussian mixtures and diagonal covariance matrix estimated on ordinary 39-dimensional

MFCC-vectors (13 bins plus ∆ and ∆∆).

In ([5]) we started with pure phoneme recognition where silence was not an (by HTK)

extractable sound . As a consequence, all silence parts were skipped and the speech recognition

system is trained without silence model. Currently, we are conducting initial experiments with

the millenium speechrecognition system. Phoneme representation is reduced to monophones

one in contrast to stat-of-the-art triphone models, which will be addressed in a second phase.

Also at this point, accoustic/languag model weighting and beam optimization need to be

considered. We expect profitable results from our hybrid approach.

Finally, big thanks to Friedrich Faubel for his vast help with the implementation of the

Millenium-specific parts.
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