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Abstract: Hidden Chunk Models (HCMs) are duration dependent trajectory models, 

which model the statistic dependencies of all feature vectors assigned to a segment. 

The segments are derived from  clustered tri-phones as used by HMMs, where each 

tri-phone is composed by three segments. A sequence Ԧܺ௟ of l feature vectors assigned 

to a segment is called chunks of length l. For each segment Qi the pdf ݌௟൫ Ԧܺ௟หܳ௜൯ 
constituting the HCMs is modeled by a GMM where the mode k is given by a 

Gaussians ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯. The sequence ߤԦ௜௞௟ of l mean vectors  represents a 

trajectory of an 'exemplar' segment realized by a chunk of length l. Investigating 

speech from 3 languages shows, that over 92% of the chunks have a length ranging 

from l=1 to 5. From those chunks the means and covariance matrices of ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ can be trained. Using the properties of multivariate Gaussians, 

the	ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ can be decomposed into conditional Gaussians allowing a frame 

by frame processing. Due to the problem of sparse training data and numerical 

inaccuracies, the parameters ߤԦ௜௞௟	, ሬܸԦ௟  cannot be estimated for l > 5. For this problem 

we present an extension approach.  The properties of the conditional Gaussians and 

their extensions are evaluated by classification experiments of segments and 

phonemes. Further Shannon’s entropy is evaluated showing the quality of the models 

used. 

1 Introduction 

 Hidden Chunk Models (HCMs) [3] are specific segment models [1] similar to trajectory 

models [2]. The segments are derived from  clustered tri-phones, where each tri-phone is 

composed by three segments. In the framework of HMMs [4] such segments are modeled by 

tied states with identical emission probabilities. HCMs are defined by duration dependent pdfs ݌௟൫ Ԧܺ௟หܳ௜൯, where Ԧܺ௟ ൌ ሾ ௟ܺ , … ଵܺሿ் denotes a sequence of l feature vectors ܺఔ assigned to a  

segment ܳ௜. The sequences Ԧܺ௟ are called ‘chunks’ of ‘length’ l. ݌௟൫ Ԧܺ௟หܳ௜൯ can be interpreted 

as an extended emission probability, which models not the distribution of a single feature 

vector ܺఔ within a state (HMM-approach) but the distribution of a complete chunk Ԧܺ௟ within a 

segment (segment model approach).For each Qi and  given chunk Ԧܺ௟ the HCM is defined by ݌௟൫ Ԧܺ௟หܳ௜൯ ൌ ∑ ܿ௜௞௟ܰሺ௄೔௞ୀଵ Ԧܺ௟; Ԧ௜௞௟ߤ , ሬܸԦ௟ሻ	           (1) 

The means and covariance matrices ߤԦ௜௞௟	, ሬܸԦ௟ model the statistical bindings of the feature 

vectors within a chunk. For a given length l all covariance matrices are tied to a single matrix 	 ሬܸԦ௟. This tying approach can be applied as LDA transformed features are used [13]. Each 

mean vector ߤԦ௜௞௟ ൌ ሾߤ௜௞௟௟ , … . , ௜௞௟ఔߤ ௜௞௟ଵሿ is composed by a sequence of l mean vectorsߤ , ߥ ൌ1,… , ݈, which can be interpreted as an exemplar trajectory representing an ‘exemplar' 

segment.  Thus - in contrast to HMMs - the means μ୧୩୪஝, ν ൌ 1,… , l depend in addition to the 

indices i,k on the indices ν and l, which describe the ‘position’ ν of each feature vector within 

a trajectory of length l. We investigate the length of segments in 3 languages. Using a frame 

shifts of 10-15ms we found, that more than 92% of the chunks have a length ranging from l=1 

to l=5. In this range the parameters of the Gaussians ܰሺ Ԧܺ௟; Ԧ௜௞௟ߤ , ሬܸԦ௟ሻ can be trained reliable. As 
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described in chapter 2 the Gaussians ܰሺ Ԧܺ௟; ,Ԧ௜௞௟ߤ ሬܸԦ௟ሻ  can be decomposed by conditional 

Gaussians ௟ܰఔ , ߥ ൌ 1,… , ݈	 : ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ ൌ ௟ܰଵ൫ ଵܺ; ,௜௞௟|ଵߤ ௟ܸ|ଵ൯∏ ௟ܰఔሺܺఔ௟௩ୀଶ |ܺఔିଵ, … , ଵܺ; ,௜,௞,௟|௩ିଵߤ ௟ܸ|௩ሻ              (2) 

The conditional Gaussians ௟ܰఔ are called Trajectory Emission Probabilities (TEPs) describing 

the distribution of the feature vectors along a trajectory. Due to limitations of training material 

and numerical problems in determining ሬܸԦ௟, the Gaussians ܰሺ Ԧܺ௟; Ԧ௜௞௟ߤ , ሬܸԦ௟ሻ can be trained no 

more reliable for large l. In chapter 2 we present a solution for this problem.  

In order to evaluate the properties of the HCMs we make classification experiments of 

segments and phonemes combined with the evaluation of Shannon’s entropy. The evaluation 

methodology is treated in chapter 3. Finally in chapter 4 we present experimental results using 

speech data of 3 languages US-English, Spanish and French. 

2 Conditional Gaussians 

2.1 Decomposition of Gaussians 

Based on the properties of multivariate Gaussians [5] a Gaussian ܰሺܼ; ,௭ߤ ௭ܸሻ can be 

decomposed by	ܰሺܼ; ,௭ߤ ௭ܸሻ ≡ ሺܼଶሻ݌ ∙ ሺܼଶሻ݌ :ሺܼଵ|ܼଶሻ with Gaussians݌ ൌ ܰ൫ܼଶ; ௓మߤ , ௓ܸమ൯; ሺܼଵ|ܼଶሻ݌ ൌ 	ܰ൫ܼଵ; ௓భ|௓మߤ , ௓ܸభ|௓మ൯; 	ܼ ൌ ሾܼଵ, ܼଶሿ்             (3) 

The means and covariance matrices of the Gaussians (3) are given by 

௭ܸ ≡ ൬ ௓ܸభభ ௓ܸభమ௓ܸమభ ௓ܸమమ൰	; 	 ௓ܸି ଵ ≡ ௓ܣ ≡ ൬ܣ௓భభ ௓మభܣ௓భమܣ ;	௓మమ൰ܣ ௭ߤ ൌ ቀߤ௓భߤ௓మቁ௓ܸమିଵ ൌ ௓మమܣ െ ௓భభିଵܣ௓మభܣ ௓భ|௓మߤ௓భమܣ ൌ ௓భߤ െ ௓భభିଵܣ ௓భమ൫ܼଶܣ െ 			;௓మ൯ߤ ௓ܸభ|௓మିଵ ൌ ௓భభܣ ۙۖۘ
ۖۗ

                 (4) 

The dimension of the sub-means and sub-covariance matrices in (4) are related to the 

dimensions of the vectors Z1 and Z2. Now we apply (3), (4) to ܰሺܼ; ,௭ߤ ௭ܸሻ ≡ ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯.  ܼଵ ≡ ௟ܺ; 	ܼଶ ≡ Ԧܺ௟,௟ିଵ ≡ ሾ ௟ܺିଵ, … , ଵܺሿ்; ௭ߤ ≡ ;Ԧ௜௞௟ߤ Ԧ௜௞௟ߤ	 ≡ Ԧ௜௞௟௟ߤ ≡ ሾߤ௜௞௟ଵ, … . , ௜௞௟௟ሿ்ߤ
௓ܸ ≡ ሬܸԦ௟; ሬܸԦ௟ ≡ ሬܸԦ௟௟ ≡ ቌ ௟ܸ௑೗௑೗ ௟ܸ௑೗௑ሬԦ೗,೗షభ௟ܸ௑ሬԦ೗,೗షభ௑೗ ௟ܸ௑ሬԦ೗,೗షభ௑ሬԦ೗,೗షభቍ , ሬܸԦ௟ିଵ ≡ ቌ ௟௑೗௑೗ܣ ௟௑ሬԦ೗,೗షభ,௑೗ܣ௟௑೗,௑ሬԦ೗,೗షభܣ ௟௑ሬԦ೗,௑ሬԦ೗,೗షభቍܣ ۙۖۘ

ۖۗ
     (5)  

This results in a decomposition ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ ൌ ௟ܰ௟൫ ௟ܺห Ԧܺ௟,௟ିଵ; ௜௞௟|௟ߤ , ௟ܸ|௟൯	 ௟ܰିଵሺ Ԧܺ௟,௟ିଵ; ,Ԧ௜௞௟,௟ିଵߤ ሬܸԦ௟,௟ିଵሻߤԦ௜௞௟,௟ିଵ ≡ ሾߤ௜௞௟ଵ, … , ;௜௞௟,௟ିଵሿ்ߤ ௜௞௟|௟ߤ ൌ	ߤ௜௞௟௟ െ ௟௑೗௑ሬԦ೗షభ൫ܣ௟௑೗௑೗ିଵܣ Ԧܺ௟,௟ିଵ െ Ԧ௜௞௟,௟ିଵ൯௟ܸ|௟ିଵߤ ൌ ;௟௑೗௑೗ܣ 		 ሬܸԦ௟,௟ିଵିଵ ൌ ௟௑ሬԦ೗షభ,௑ሬԦ೗షభܣ െ ௟௑೗,௑ሬԦ೗షభܣ௟௑೗௑೗ሻିଵܣ௟௑ሬԦ೗షభ,௑೗ሺܣ ۙۘۖ
ۖۗ

          (6) 

We continue the decomposing procedure of ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ by splitting ݌ሺܼଶሻ ≡௟ܰିଵሺ Ԧܺ௟,௟ିଵ; ,Ԧ௜௞௟,௟ିଵߤ ሬܸԦ௟,௟ିଵሻ again into two conditional Gaussians by setting ܼଵ ≡ ௟ܺିଵ; ܼଶ ≡Ԧܺ௟,௟ିଶ, ܼ ൌ ሾܼଵ, ܼଶሿ்; ௭ߤ ൌ ;Ԧ௜௞௟,௟ିଵߤ ௭ܸ ൌ ሬܸԦ௟,௟ିଵ.The resulting Gaussians ݌ሺܼଵ|ܼଶሻ and ݌ሺܼଶሻ 
have the same structure as given by (6) but with different means and covariance matrices. The 

decomposing procedure can be continued by splitting the resulting ݌ሺܼଶሻ again. This 

procedure can be repeated till ܼଶ ≡ ଵܺ. Thus this procedure leads to a recursive scheme to 

determine the means and covariance matrices of the conditioned Gaussians ௟ܰఔ 	; ߥ	 ൌ ݈, … ,1. 

The scheme is performed in 3 steps: initialization, iteration and finalization. 

ܼ	:࢔࢕࢏࢚ࢇ࢙࢏࢒ࢇ࢏࢚࢏࢔ࡵ  ≡ Ԧܺ௟ ≡ ሾ ௟ܺ , … , ଵܺሿ்; 	ܼ ≡ ሾܼଵ, ܼଶሿ்; 	ܼଵ ≡ ௟ܺ; 	ܼଶ ≡ Ԧܺ௟,௟ିଵ ≡ ሾ ௟ܺିଵ, … , ଵܺሿ்																					 ௓ܸ ≡ ሬܸԦ௟ ≡ ሬܸԦ௟௟ ≡ 〈ሺ Ԧܺ௟ െ Ԧ௜௞௟ሻሺߤ Ԧܺ௟ െ ;	〈Ԧ௜௞௟ሻ்ߤ ௭ߤ ≡ Ԧ௜௞௟ߤ ≡ Ԧ௜௞௟௟ߤ ≡ ሾߤ௜,௞,௟,௟ , … , ௜,௞,௟,ଵሿ்ߤ ቋ (7) 
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ߥ	for	:࢔࢕࢏࢚ࢇ࢘ࢋ࢚ࡵ ൌ ݈, … ,2:		Zଵ ≡ Xఔ; 	Zଶ ≡ Ԧܺ௟,௩ିଵ ≡ ሾXఔିଵ, … , Xଵሿ୘  ሬܸԦ௟ఔିଵ ≡ ቌ ௟௑ೡ௑ೡܣ ௟௑ሬԦ೗,ೡషభ,௑ഌܣ௟௑ೡ,௑ሬԦ೗,ೡషభܣ ௟௑ሬԦ೗,ೡషభ௑ሬԦ೗,ೡషభቍܣ ; ൫ሬܸԦ௟,ఔିଵ൯ିଵ ≡ ௟௑ሬԦ೗,ഌషభ,௑ሬԦ೗,ഌషభܣ െ ௟௑ഌ௑ሬԦ೗,ഌషభܣ௟௑ഌ௑ഌ൯ିଵܣ௟௑ሬԦ೗,ഌషభ,௑ഌ൫ܣ
௜௞௟|ఔߤ ൌ ௜௞௟ఔߤ െ ൫ܣ௟௑ഌ௑ഌ൯	ିଵܣ௟௑ೡ௑ሬԦ೗,ೡషభ൫ Ԧܺ௟,ఔିଵ െ Ԧ௜௞௟,ఔିଵߤ		;Ԧ௜௞௟,ఔିଵ൯ߤ ≡ ሾߤ௜௞௟,ఔିଵ, … . , ሺܼଵ|ܼଶሻ݌௜௞௟,ଵሿ்ߤ ≡ ௟ܰఔ൫ܺఔห Ԧܺ௟,ఔିଵ; ௜௞௟|ఔߤ	 , ௟ܸ|ఔ	൯; ௟ܸ|ఔ ൌ ൫ܣ௟௑ೡ௑ೡ൯ିଵ; ሺܼଶሻ݌ ≡ ఔܰ൫ Ԧܺ௟,ఔିଵ; ,Ԧ௜௞௟,ఔିଵߤ ሬܸԦ௟,ఔିଵ൯ۙۖۘۖ

ۖۗۖ
  (8) 

ߥ	for	:ܖܗܑܜ܉ܢܑܔ܉ܖ۴ܑ ൌ 2; 	Zଵ ≡ Xଶ; 	Zଶ ൌ Ԧܺ௟,ଵ ≡ Xଵ; Ԧ௜௞௟|ଵߤ	 ≡ ௜௞௟ଵ  ሬܸԦ௟ଶିଵߤ ≡ ቆܣ௟௑మ௑మ ௟௑భ,௑మܣ௟௑మ,௑భܣ ௟௑భ,௑భቇܣ ; ൫ሬܸԦ௟ଵ൯ିଵ ≡ ௟௑భ,௑భܣ െ ሺܼଶሻ݌௟௑మ௑భܣ௟௑మ௑మ൯ିଵܣ௟௑భ,௑మ൫ܣ ≡ ௟ܰଵ൫ ଵܺ; μ௜௞௟|ଵ, ௟ܸ|ଵ൯;	 ௟ܸ|ଵ ≡ ሬܸԦ௟ଵ																																																								ൢ    (9) 

Thus we have derived a scheme to split ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ into TEPs ௟ܰఔ൫ܺఔห Ԧܺ௟,ఔିଵ; ,௜௞௟|ఔߤ	 ௟ܸ|ఔ	൯ 
for ߥ ൌ 1,… , ݈ leading to the decomposition (2). According to (8) the conditional means ߤ௜,௞,௟|௩, ݒ ൌ 1,… , ݈ depend on the feature vector ܺఔ , … , ଵܺ. Thus at frame ߥ the conditional 

means ߤ௜௞௟|ఔ can be processed online without delay, as all feature vectors are known. This 

property allows a frame by frame processing as needed for online recognition system starting 

with the processing of the TEP ௟ܰଵ൫ ଵܺ; μ௜௞௟|ଵ, ௟ܸ|ଵ൯. The covariance matrices and their inverse 

(7-9) can be processed offline, as they depend from ሬܸԦ௟ only. Yet the values of the GMMs (1)  

have to be computed delayed  at frame ߥ ൌ ݈, when all TEPs are available. The impact of 

delay together with different possible length of the chunks has to be implemented in the 

search process of an online recognizer. 

2.2 Extension of Gaussians 

We assume that the parameters of the Gaussians ܰ൫ Ԧܺ௟; ,	Ԧ௜௞௟ߤ ሬܸԦ௟൯ can be estimated reliable for a 

length ݈ ൑ ݉଴. In this section we derive a scheme to extend the Gaussians for ݈ ൐ ݉଴. The	matrix		 ሬܸԦ௟	is	composed	by	covariance	elements	 ௟ܸ௑ೡ௑ೡᇲ , which denotes the covariance 

matrix of the feature vectors ܺ௩, ܺ௩ᇱ i.e. of feature vectors with different position ݒ within a 

chunk Ԧܺ௟. ሬܸԦ௟ is composed by these elements in	the	form	ሬܸԦ௟ ൌ ቌ ௟ܸ௑೗௑೗ 			 ௟ܸ௑೗௑೗షభ … ௟ܸ௑೗௑మ ௟ܸ௑೗௑భ⋮௟ܸ௑భ௑೗ 			 ௟ܸ௑భ௑೗షభ … ௟ܸ௑భ௑మ 							 ௟ܸ௑భ௑భቍ		 	 	 	 	 	 												ሺ10ሻ	
As the covariance elements V୪ଡ଼౬ଡ଼౬ᇲ are known only for ν, ν′ ൑ ݉଴, we have to find an 

approximation for the missing elements. Our approach is based on the idea that the correlation 

between feature vectors vanishes for increasing distance and that feature vectors with the 

same distance in time given by |ν െ νᇱ| have the same correlation as the feature vector ܺ݉0. 
This leads to the approximation: 

෨ܸ௟௑ೡ௑ೡᇲ ≡ ۔ۖەۖ
ۓ ௟ܸ௑ೡ௑ೡᇲ ,ߥ		ݎ݋݂																																																																													 ′ߥ ൑ ݉଴݂หఔିఔᇲห ∙ ௠ܸబ௑೘బ௑೘బషหഌషഌᇲห ߥ	ݎ݋݂	 ൒ ݂หఔିఔᇲห	ᇱߥ ∙ ௠ܸబ௑೘బషหഌషഌᇲห௑೘బ ߥ	ݎ݋݂	 ൏ ߥ|	ݎ݋ᇱቑ݂ߥ െ |ᇱߥ ൏ ݉଴0																																													݂ݎ݋	ߥ| െ |ᇱߥ ൒ ݉଴ ۙۘۖ

ۖۗ ᇱߥ	ݎ݋	ߥ	ݎ݋݂ ൐ ݉଴													ሺ11ሻ	
݂หఔିఔᇲห ൌ ൜ ߥ	ݎ݋݂																		1 ൌ ଴݂	ᇱߥ ൏ ߥ|	ݎ݋݂		1 െ |ᇱߥ ൐ 0			
In (11) an extension factor ݂หఔିఔᇲห is introduced. A value ݂หఔିఔᇲห ൌ 1  would be consistent with 

our approach. But it turned out that the value ݂หఔିఔᇲห ൌ 1  leads to matrices ෨ܸሬԦ௟ with negative 
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determinant. Besides the extension of the matrix (10) we have to extend the means for l>m0. 

Here we assume, that the trajectory gets stationary for l>m0. Thus the sequence μሬԦ୧,୩,୪ ൌቂμ୧,୩,୪,ଵ, … . , μ୧,୩,୪,୪ቃ of the mean vectors μ୧,୩,ఔ,୪ is continued with the means estimated for l=m0 

μ୧,୩,ఔ,୪ ൌ ቆμ୧,୩,ఔ,௠బ ߥ	ݎ݋݂	 ൑ ݉଴
μ୧,୩,௠బ,௠బ 	for	ν ൐ ݉଴ቇ ݈ ൐ ݉଴         (12) 

When l exceed a certain value ݈଴- occurring often for ‘non speech’ segments – we follow a l0-

gram approach. Thus we limit the the statistic dependencies of the feature vectors till an order 

of l0  leading to the approximation 

௟ܰఔሺܺఔ|ܺఔିଵ, … , ଵܺ; ,௜,௞,௟|௩ିଵߤ ௟ܸ|௩ሻ ൎ ቊ ௟ܰబఔ൫ܺఔ|ܺఔିଵ, … , ଵܺ; ,௜,௞,௟బ|௩ିଵߤ ௟ܸబ|௩൯	for	ν ൑ ݈଴௟ܰబ௟బሺܺఔ|ܺఔିଵ, … , ܺఔାଵି௟బ; ௜,௞,௟బ|௟బߤ , ௟ܸబ|௟బ 	for	ν ൐ ݈଴ቋ ݈ ൐ ݈଴  (13) 

3 Evaluation 

3.1 Classification of Segments and Phonemes 

We assume that the boundaries of each clustered  tri-phone ݄ܲ௖ including the boundaries of 

its segments Qi are known. We denote the 3 segments composing ݄ܲ௖ by ܳ௜ሺ௖,௣ሻ, ݌ ൌ 1,2,3  

and the given boundary information by Ԧܵ ≡ ሼ݈௣, ݌ ൌ 1,2,3ሽ. For classification of phonemes ܲ ௝݄ we need an acoustic model ݌൫ Ԧܺ௧หܲ ௝݄ , Ԧܵ൯. We first define an acoustic model ݌௧൫ Ԧܺ௧ห݄ܲ௖ ,  ൯ݐ
for each clustered tri-phone Phc given by ݌௧൫ Ԧܺ௧ห݄ܲ௖൯ ൌ ∏ ௟೛݌ ቀ Ԧܺ௟೛ቚܳ௜ሺ௖,௣ሻቁଷ௣ୀଵ ; ݐ ൌ ∑ ݈௣ଷ௣ୀଵ ; 	 Ԧܺ௧ ൌ ሾ Ԧܺ௟భ , … , Ԧܺ௟యሿ்                (14) 

The model (14) assumes that the chunks Ԧܺ௟೛for different segments are statistic independent. 

This assumption is quite crude and corresponds to the statistic independence assumption of 

feature vectors on frame level of HMMs. Given a set of phonemes Phj, j=1,...,NPh we define 

sets C(j) containing all indices of clustered tri-phones Phc having Phj as central phoneme. This 

leads to a context independent acoustic model for phonemes: ݌൫ Ԧܺ௧หܲ ௝݄൯ ൌ ∑ ቂܲሺ݄ܲ௖|ܲ ௝݄ , ∏ሻݐ ௟೛݌ ቀ Ԧܺ௟೛ቚܳ௜ሺ௖,௣ሻቁଷ௣ୀଵ ቃୡ∈େሺ୨ሻ୒ౌ౞୨ୀଵ    	 													(15)	
For classification of phonetic units ܷܲ ∈ ሼܳ, ݄ܲሽ we use a maximum likelihood classifier ܲ෢ܷ ൌ ௝ൣܲሺܲݔܽ݉݃ݎܽ ௝ܷ|ݐሻ݌൫ Ԧܺ௧หܲ ௝ܷ , Ԧܵ൯൧                   (16) 

We use as a-priori probability the duration dependent unit-monogram ܲ൫ܲ ௝ܷห݈൯, which can be 

estimated directly from databases. This approach reduces the dependencies of error rates from 

the syntactic and semantic restrictions given by a language. Thus we focus the evaluation on 

the quality of the acoustic models. Given the acoustic models (1) and (15) and the ML-

classifier (16)  we get ෠ܳ ൌ ௟൫݌ൣܲሺܳ௜|݈ሻ	୧ݔܽ݉݃ݎܽ Ԧܺ௟หܳ௜൯൧                    (17) ܲ෢݄ ൌ ௝ൣܲሺܲݔܽ݉݃ݎܽ ௝݄|ݐሻ݌൫ Ԧܺ௧หܲ ௝݄൯൧        (18) 

3.2 Entropy 

Based on Shannon’s theory on entropy [6] relations between error rates and Shannon's 

conditional Entropy can be derived [7,8].  Given  phonetic units PUj ,j=1,...,NPU realized by 

chunks Ԧܺ௧ of length t Shannon' conditional Entropy ܪ௧൫ܷܲห Ԧܺ௧൯ is defined by  ܪ௧൫ܷܲห Ԧܺ௧൯ ≡ ሻݐ|௧ሺܷܲܪ െ ௧൫ܫ Ԧܺ௧; ܷܲ൯;	ܫ௧൫ Ԧܺ௧; ܷܲ൯ ≡ ௧൫ܪ Ԧܺ௧൯ െ 	௧ሺܪ Ԧܺ௧|ܷܲሻܪ௧ሺܷܲ|ݐሻ ≡ െ∑ ܲ൫ܲ ௝ܷ|ݐ൯	log	ሺܲሺܲ ௜ܷ|ݐሻሻேುೆ௝ୀଵ ; ௧൫ܪ	 Ԧܺ௧൯ ≡ െ݌׬ሺ Ԧܺ௧ሻ݈݃݋	݌ሺ Ԧܺ௧ሻ	݀ Ԧܺ௧ܪ௧൫	 Ԧܺ௧หܷܲ൯ ≡ െ∑ ܲ൫ܲ ௝ܷ|ݐ൯ேುೆ௝ୀଵ ௧ሺ݌׬ Ԧܺ௧| ܲ ௝ܷሻ	݈݃݋	݌௧ሺ Ԧܺ௧|ܲ ௜ܷሻ	݀ Ԧܺ௧ ۙۘ
ۗ

     (19)   

 ሻ is the information needed to recognize the PUs without error from chunks of lengthݐ|௧ሺܷܲܪ

t. The mutual information ܫ௧൫ Ԧܺ௧; ܷܲ൯ is the information gained from the chunks Ԧܺ௧. Whenever 
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the relation ܪ௧ሺܷܲሻ ൐ ௧൫ܫ Ԧܺ௧; ܷܲ൯ holds, errors occur. As the correct distribution ݌௧ሺ Ԧܺ௧|ܲ ௜ܷሻ 
is unknown, we use approximations as ݌෤௟൫ Ԧܺ௟หܳ௜൯, ෤௟ሺ݌ Ԧܺ௟ሻ given by the GMMs (1). We 

determine the entities defined in (19) by the Monte Carlo Method [9]. For example the entity ܪ௟൫	 Ԧܺ௟หܳ൯ is evaluated by NS(i,l) samples of chunks Ԧܺ௟௡ assigned to the segment Qi using 

 െ݌׬௟ሺ Ԧܺ௟| ܳ௜ሻ	݈݃݋	ሺ݌௟ሺ Ԧܺ௟|ܳ௜ሻ	݀ Ԧܺ௧ ൎ െ భಿೄሺ೔,೗ሻ∑ ௟෥ሺ݌	݃݋݈ Ԧܺ௟௡|ܳ௜ሻேೄሺ೔,೗ሻ௡ୀଵ               (20) 

To our knowledge there exists no theory, which predicts exactly the error rates given ܪ௟൫ܷܲห Ԧܺ௧൯. Yet there exist bounds for the error rates, which depend only on the number NPU 

of units to be recognized. We regard as upper bound the Fano bound [10] and we regard as 

lower bound the Golic bound [11]. In the next chapter we present Fano-Golic plots, which 

relate the error rates to Shannon's entropy. Bad approximation of an acoustical model is 

indicated when the measured points are close or outside the Fano-Golic bounds.  

3.3 Variance Analysis of TEPs 

The covariance matrices ௟ܸ|ఔ , ߥ ൌ 1,… , ݈ iare a measure for the variation of the feature vectors 

along the trajectory. The conditional Gaussians can be written in the form ௟ܰఔ൫ܺఔห Ԧܺ௟,ఔିଵ; ௜௞௟|ఔߤ	 , ௟ܸ|ఔ	൯ ≡ ଵሺଶ	గ௱೗ഌሻವమ ݁ିభమሺ೉ഌషഋሻ೅ಲሺ೉ഌషഋሻ	; ܣ ≡ ௟ܸ|ఔିଵ; ߤ	 ≡ ௟ఔ߂  with	௜௞௟|ఔߤ ≡ det	ሺ ௟ܸ|ఔሻభವ	   (21) 

(D denotes the dimension of the feature vector ܺఔ). The entity ߂௟ఔ can be interpreted as the 

average variance of the vector components of ܺఔ. (For example for a diagonal matrix ௟ܸ|ఔ ൌ ܦ=with dim(I) 	ܫଶߪ ∙ ௟ఔ߂ we get ܦ ൌ  ௟ఔ should߂ ,ଶ). For correlated feature vectorsߪ

decrease with ߥ, as the statistical dependency increases with increasing length of  vector Ԧܺ௟,ఔ.  

4 Experimental Results 

4.1 Experimental Set-Up 

Our experiments are performed with Spanish and French speech databases of broadcast news, 

conversations and podcast downloaded from various internet sources. The databases were 

developed during the QUAERO project and used during for ASR evaluation [12]. The 

labeling into segments was performed by the HMM training system [13] using 3 or 6 state 

right to left HMMs. The segments are constructed by clustering tri-phones using CART under 

the condition that the central phoneme is not tied. We also use results [3] derived from an 

American English Database of in car recorded speech according to the SpeechDat 

recommendations [14]. To compare results from all 3 databases the number of segments is 

chosen to be in the order of 600 for all 3 languages. The feature vectors are derived from LDA 

transformed augmented MFCCs. For labeling the Spanish database a 3-2-HMM with tied 

emission probabilities was used, where each of the 3 segments of the clustered tri-phones has 

to be assigned at least to one feature vector. For the French database a 3-1-HMM was used 

allowing skipping of segments. For training the GMMs (1) we collect from the labeled data 

for each labeled segments Qi all the aligned chunks Ԧܺ௟ of length l. Given those sets of chunks 

the HCMs were trained using the EM-algorithm in its unified form [4, chapter 7] without 

changing the boundaries of the segments. The size of the databases and the length distribution 

shown in tab.1 allows to train HCMs till l=3 for Spanish and to train HCMs till l=6 for 

French. Yet for French for the HCM for l=6 the determinant of the covariance matrix 	 ሬܸԦ଺ 

became negative due to limited numerical accuracy given by MATLAB-R2010b. Thus for 

French, extensions (11) for l > m0=5 has to be applied. As shown in tab. 1 most chunks have 

the length l=2. More than 92% of the segments have a length l less than 6. Compared to US-

English and Spanish, the French database has more longer segments (about 20% for l>3).  

In the following we use as log-function the base 2. Thus the entropies have as units bit. In 

table 2 the distribution P(Qi|l), derived from counting the chunks of length l assigned to Qi, is 
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characterized by the entropies ܪ௟ሺܳሻ. For equal distributed segments ܪ௟ሺܳሻ would take the 

value log2 NQ (e.g. log2 607=9.25 [bit]). Table 2 shows smaller values than for equal 

distribution P(Qi|l). 
 

Speech  
database 

frame 
shift 

#chunks 
 for training 

#chunks 

for test 
ܲሺ݈|ܳሻ ݅݊ % ݂݋ ;ܽݐܽ݀	݃݊݅݊݅ܽݎݐ 		݈:1 2 3 4  5  ൒ 6

US‐English  15ms  33.879.857  ‐ 29 46 25 n.a.*  n.a  n.a.

Spanish  10ms  4.529.470  3.760.799  26.3 62.5 6.4 1.9  0.8  2.2

French  10ms  27.164.564  4.095.502 26.8 31.6 20.6 9.4  4.1  7.6

Table 1 - amount of data and length distribution ܲሺ݈|ܳሻ of the chunks (*n.a. = not available) 
 

Speech  
database 

# of segments 
NQ 

݈ / ሿ1ݐ௟ሺܳሻሾܾ݅ܪ 2 3 4 5  6 
US‐English  607  7.78 8.35 7.37 n.a. n.a.  n.a. 
Spanish  604  8.80 8.92 8.82 8.53 8.06  3.21 
French  598  8.77 8.75 8.72 8.62 8.54  7.63 

Table 2 - number of segments and entropy ܪ௟ሺܳሻ 
4.2 Error Rates and Shannon's Conditional Entropy 

The segment error rates are determined by evaluating (15). Due to table 3 the SERs drop with 

increasing l till l=3. For larger l the SERs tend to be stable till l=m0 is achieved. Afterwards 

SER increases. This result is discussed in more detail in section 4.3. 

 

Speech  
database 

# of Modes 

per HCM 
;ܴܧܵ ݈:  

m0

 
f0 1  2  3  4  5  6 

US‐English  607  83.9  71.1 49.8 n.a. n.a. n.a. 3  ‐ 
Spanish  604  83.4  71.2 57.5 62.2 66.9 39.8 3  0.3 
French‐5  598  75.1  62.1 57.5 56.2 56.7 61.7 5  0 
French‐3  598  75.1  62.1 57.5 62.9 73.7 79.0 3  0 

Table 3 - Segment Error Rate (SER) for mono-modal HCMs; for US-English a diagonal covariance matrix was 

chosen; For French and Spanish the HCMs were extended according to (14) till l0=6.  
 

Fig. 1 shows Fano-Golic plots for the segments (PUi = Qi), where ܪሺܳ| Ԧܺ௟ሻ is determined  or 

outside the Fano bound. For Spanish with m0=3 for l=4 the point is on the border and for  

 
Figure 1.a - French: #modes= 46 101, m0=5 , l0=6    Figure 1.b - Spanish: #modes=50 000, m0=3 , l0=6 
 

for l=6 outside the Fano bound. For French with m0=5 for l=6 the point is outside of the plot. 

These results indicates the poor acoustic model of the extension approach (11). Table 4 shows 

the phoneme error rates and related mutual information for Spanish and French for different 
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number of modes. The mutual information for French is negative indicating a poor acoustic 

model (17). 
Language\#modes  Mono‐Modes 10000 50000 NPh  H(Ph) 
ES‐PER\I(Ph;X) 33.4/3.74 28.7/4.48 27.3/4.8 32  n.a. 
FR‐PER\I(Ph;X) 70.7/‐10.32 n.a. 68.2/‐11.6 40  4.72 

 Table 4 - Phoneme error rates (PER) and mutual information I(Ph|X)  

4.3 Analysis of Decomposition 

Table 5 and 6 show the values of ߂௟ఔ (21) for the TEPs Nlν and for ሬܸԦ௟ for different extension 

configurations for French. To avoid negative determinants the extension value f0 (11) is set to 

0. As expected ߂௟ఔ  of the TEPs  decreases for increasing ν  .  This decrease is observed till ν ൑ m଴. For ߥ ൐ ݉଴, ߂௟ఔ  takes values as for ߥ ൌ 1, as for ଴݂ ൌ 0  the feature vector ܺఔ is 

modeled to be statistic independent from the feature vectors Ԧܺఔ,ఔିଵ. In analogy to (21) the 

values ߂௟ is defined for the complete covariance matrix ሬܸԦ௟. ሬܸԦ௟ decrease with increasing l 

indicating, that trajectories with increasing l show less variations. 

m0=3  l0=6  f0=0                 m0=3      l0=6    f0=0 ߂௟ఔ    ௟߂
 

 ௟ఔ߂  ௟߂
 l\nue  1  2  3  4  5  6 l\nue 1 2 3 4  5  6 

 1  1.00                 1.00 1 0.71          0.71

2  0.97  0.28              0.52 2 0.73 0.23          0.41

3  0.93  0.26  0.16          0.34 3 0.83 0.24 0.15          0.31

4  0.93  0.26  0.16 0.94        0.33 4 0.83 0.24 0.15 0.84        0.29

5  0.93  0.26  0.16 0.94  0.94     0.32 5 0.83 0.24 0.15 0.84  0.84     0.27

6  0.93  0.26  0.16 0.94  0.94  0.94 0.32 6 0.83 0.24 0.15 0.84  0.84  0.84 0.26

Table 5a-߂௟ఔ,߂௟ for mono-mode HCMs                                Table 5b -  ߂௟ఔ,߂௟ for HCMs with 50 000 modes 

 

m0=5  l0=6  f0=0                 m0=5     l0=6    f0=0 ߂௟ఔ    ௟߂
 

 ௟ఔ߂  ௟߂
 l\nue  1  2  3  4  5  6 l\nue 1 2 3 4  5  6 

 1  1.00                 1.00 1 0.71          0.71

2  0.97  0.28              0.52 2 0.73 0.23          0.41

3  0.93  0.26  0.16          0.34 3 0.83 0.24 0.15          0.31

4  0.91  0.23  0.15 0.08        0.22 4 0.84 0.22 0.14 0.08        0.21

5  0.92  0.25  0.2  0.13  0.11     0.13 5 0.85 0.21 0.13 0.07  0.02     0.13

6  0.91  0.22  0.14 0.07  0.02  0.92 0.13 6 0.85 0.21 0.13 0.07  0.02  0.86 0.13

Table 6a-߂௟ఔ,	߂௟for mono-mode HCMs                               Table 6b - ߂௟ఔ,  ௟ for HCMs with 50 000 modes߂

 

# of Modes    ;ܴܧܵ ݈:   
PER 

 
m0

 
f0 1  2  3  4  5  6  6 ൐

1.794  78,2 63,6  58,8  63,6 69,6 78,9 80,5 67,9 3  0 
2.290  78,2 63,6  58,8  57,9 59,0 77,5 82,9 69,6 5  0 

37.818  73,4 56,5  55,4  61,9 68,1 77,5 79,0 66,4 3  0 
46.101  72,2 55,8  55,0  55,6 56,7 80,8 87,9 68,2 5  0 

Table 7 - SER and PER for different extension configurations and modes 

 

The related SER and PER values are shown in tab.7 . Increasing number of modes decreases 

SER for ߥ ൑ ݉଴.  For ߥ ൐ ݉଴ SER gets worth caused by crude extension approach (11),(13). 
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6 Conclusion 

We have presented the decomposition of chunk related Gaussians into conditional Gaussians 

allowing a frame based processing of the TEPs and allowing to handle arbitrary long chunks. 

Numerical problems in estimating covariance matrices of long chunks are observed. Perhaps 

the HCM training can done for conditional Gaussians using a similar decomposition approach 

as (8) avoiding the inversion of high dimensional matrices. The used extension strategy leads 

to poor TEPs as the extended covariance matrices are not realistic covariance matrices. Here a 

better extension model is needed. Perhaps an ARMA model for feature vectors of a chunk can 

be applied. The high phoneme error rates for French has to be investigated further. It seems 

that the used segments are not appropriate to model trajectories for phonemes. 
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