
PETRI NET TRANDUCERS IN SEMANTIC DIALOGUE MODELLING

Markus Huber and Robert Lorenz

Augsburg University, Germany

robert.lorenz@informatik.uni-augsburg.de

Abstract: In this paper we introduce Petri net transducers for the translation of

non-sequential languages and present an application in the �eld of semantic dia-

logue modelling. Petri net transducers are a natural generilization of �nite state

transducers which in general provide more compact and intuitive models, are more

�exible in use and have a higher expressive power.

1 Introduction

In this paper we introduce Petri net transducers (PNTs), a natural generalization of �nite state

transducers (FSTs), for the translation of so called non-sequential languages and present an

application in the �eld of semantic dialogue modelling.

A non-sequential language contains words not consisting of a total order on their symbols but

consisting of a partial order. Such words are called partial words. Figure 1 shows two partial

words, an input and an output word of a Petri net transducer (PNT), in the form of directed

acyclic graphs: The nodes represent the symbols of the partial word and the arrows a partial

order on these symbols. For example, the input word consists of the symbols a,b,c, where a

precedes c and all other occurrences of symbols are unordered. The output word consists of one

occurrence of the symbol x and two occurrences of the symbol y.

Non-sequential languages can be used as compact representations of sequential languages since

a partial word is uniquely determined by the set of its so called linearizations. A linearization

of a partial order is a total order including the partial order. For example, the input word from

Figure 1 has the linearizations abc, bac and acb.

Figure 1 - Example of a PNT, translating a partial word into another partial word.

286

Moreover, non-sequential languages can provide additional information concerning concrete

application areas. For example, symbols may represent action names of a concurrent system.

In this case the partial order is used to model causal dependencies between action occurrences.

Unordered action occurrences are interpreted to be causally independend or concurrent, which

means that they can be observed in any order and also simultaneously. A PNT may be used to

translate between non-sequential runs of the systems on different levels of abstraction.

In the second part of this paper we present an application where symbols represent

• on the one side words from utterances a speech dialogue system can understand (for

example �Call Peter Parker�),

• on the other side semantic categories the system can deal with (for example person, rst-
name, lastname).

Utterances are modelled as total orders and PNTs are used to assign so called meanings to utter-

ances, where a meaning is a partial order representing the relation between semantic categories

and sub-categories.

PNTs are a natural generalization of FSTs, since FSTs are used to translate sequential languages

(consisting of words with a total order on their symbols) into sequential languages. There are

several proposals to apply FSTs in the area of speech dialogue systems. One is the translation

of speech signals into regocnition results up to the syntax level[2]. There are some publications

using FSTs also on the semantic level [7] and there are some extensions of FSTs introducing

restricted forms of parallelism in order to express additional information [4, 5]. An actual pub-

lication introduces the concept of so called (nested) multi-sequential languages as a concept

�between� sequential and non-sequential languages and examines their applicability in speech

processing and processability by FSTs [10]. PNTs are able to translate general partial lan-

guages, thus they provide more compact and intuitive models than FSTs, are more �exible in

use and have a higher expressive power. On the other side, there is a fully developed theory

of FSTs including many useful operations on FSTs with ef�cient implementations in standard

libraries [6, 12].

There are already several publications introducing PNTs and applying them in different appli-

cation areas [9, 8, 1], however these are mainly case studies. Up to now there is no common

basic formal de�nition and no theory on PNT-operations as for FSTs. Moreover, all existing

de�nitions only make use of sequential semantics of PNTs.

The paper is organized as follows: In the �rst part (Section 2) we present a basic formal de�ni-

tion of PNTs for the translation of partial languages which is a proper generalization of FSTs.

In the second part (Section 3) we discuss a simple example showing the applicability of PNTs

in the area of semantic dialogue modelling.

2 Basic Formalism

In this section we develop a basic formalism of Petri net transducers (PNTs) as a natural gener-

ilization of �nite state transducers (FSTs).

287

2.1 Mathematical Preliminaries

We start with necessary standard mathematical notions and de�nitions including labelled partial

orders.

By N0 we denote the set of nonnegative integers, by N the set of positive integers.

Given a function f from X to Y and a subset Z of X we write f |Z to denote the restriction of f
to the set Z.

Given a �nite set X , the symbol |X | denotes the cardinality of X . The set of all subsets of X is
denoted byP(X).

The set of all multisets over a set X is the set NX of all functions f : X → N. Addition + on

multisets is de�ned by (m+m′)(x) =m(x)+m′(x). The relation≤ between multisets is de�ned
through m ≤ m′ ⇐⇒ ∃m′′(m+m′′ = m′). We write x ∈ m if m(x) > 0. A multiset is nite, if

∑x∈X m(x) is �nite. A set A⊆ X is identi�ed with the multiset m satisfying m(x) = 1⇐⇒ x ∈
A∧m(x) = 0⇐⇒ x 6∈ A. The support of a multisetm is the set set(m) = {x | x ∈m}. A multiset
m satisfying m(a) > 0 for exactly one element a we call singleton multiset and denote it by

m(a)a. The multiset m satisfying ∀x ∈ X(m(x) = 0) we call empty multiset and denote it by λ .

Let X ,T be sets and l : X → T be a labelling function assigning to each x ∈ X a label l(x) from
T . Such a labelling function can be lifted to subsets Y ⊆ X in the following way: l(Y) is the
multiset over T given by l(Y)(t) = |l−1(t)∩Y |.

Given a binary relation R ⊆ X ×Y and a binary relation S ⊆ Y ×Z for sets X ,Y,Z, then their

composition is de�ned by R ◦ S = {(x,z) | ∃y((x,y) ∈ R∧ (y,z) ∈ S)} ⊆ X ×Z. For a binary

relation R⊆ X×X over a set X , we denote R1 = R and Rn = R◦Rn−1 for n≥ 2. The symbol R+

denotes the transitive closure
⋃

n∈NR
n of R and the symbol R∗ denotes the re!exive transitive

closure R+∪{(x,x) | x ∈ X} of R. We also write aRb to denote (a,b) ∈ R.

Let A be a �nite set of characters. A (linear) word over A is a �nite sequence of characters from

A. For a word w its lengths |w| is de�ned as the number of its characters. The symbol ε denotes
the empty word satisfying |ε| = 0. By A∗ we denote the set of all words over A. A (classical)

language over A is a (possibly in�nite) subset of A∗.

A (concurrent) step over A is a multiset over A. A step sequence or stepwise linear word over A

is a �nite sequence of steps over A. A step language over A is a (possibly in�nite) set of �nite

step sequences over A.

A directed graph is a pairG= (V,→), whereV is a �nite set of nodes and→⊆V×V is a binary

relation over V, called the set of edges (all graphs considered in this paper are �nite). The set

of nodes of a directed graph G is also denoted by V (G). The preset of a node v ∈ V is the set
•v= {u | u→ v}. The postset of a node v∈V is the set v• = {u | v→ u}. The preset of a subset
W ⊆ V is the set •W =

⋃
w∈W

•w. The postset of a subset W ⊆ V is the set W • =
⋃

w∈W w• .

A path is a sequence of (not necessarily distinct) nodes v1 . . .vn (n > 1) such that vi → vi+1
for i = 1, . . . ,n− 1. A path v1 . . .vn is a cycle, if v1 = vn. A directed graph is called acyclic,

if it has no cycles. The set of maximal nodes of an acyclic directed graph G = (V,→) is the
set Max(G) = {v | v• = /0}, the set of its minimal nodes is the set Min(G) = {v | •v = /0}. An
acyclic directed graph (V,→′) is an extension of an acyclic directed graph (V,→) if →⊆→′.

An acyclic directed graph (V ′,→) is a pre x of an acyclic directed graph (V,→) if V ′ ⊆V and

(v′ ∈V ′)∧ (v→ v′) ⇒ (v ∈V ′). An acyclic directed graph (V ′,→) is a sub-graph of an acyclic
directed graph (V,→) if V ′ = U \W for pre�xes (U,→) and (W,→). Then (W,→) is called
pre x of the sub-graph (V ′,→).

288

Figure 2 - Example of a partial order and all of its extensions.

A partial order over a set V is a binary relation <⊆V ×V which is irre�exive (∀v ∈V : v 6< v)

and transitive (<=<+). We associate a �nite partial order < over V with the directed graph

(V,<).

Two nodes v,v′ ∈ V of a partial order (V,<) are called independent if v 6< v′ and v′ 6< v. By

co< ⊆ V ×V we denote the set of all pairs of independent nodes of V . A co-set is a subset

C⊆V ful�lling ∀x,y ∈C : xco< y. A cut is a maximal co-set w.r.t. set inclusion. For a co-setC

of a partial order (V,<) and a node v ∈V \C we write v <C, if v < s for an element s ∈C and

vco<C, if vco< s for all elements s ∈C. The setsMax(po) andMin(po) are cuts.

The skeleton of a �nite partial order po= (V,<) is the minimal relation≺⊆< satisfying≺+=<.

Graphically, nodes of partial orders are drawn as small circles and the order relation by (drawn-

through) arrows between nodes. Figure 2 shows an example partial order together with all of

its extensions. The nodes u and v as well as w and v are independent.

A net is a 3-tuple N = (P,T,F), where P is a �nite set of places, T is a �nite set of transitions
disjoint from P and F ⊆ (P×T)∪ (T ×P) is the !ow relation. A marking of a net assigns to

each place p ∈ P a number m(p) ∈ N0, i.e. a marking is a multiset over P. A marked net is a

net N = (P,T,F) together with an initial marking m0. Graphically, places are drawn as circles,

transitions as squares and the �ow relation as arrows between places and transitions. A marking

m is illustrated by drawing m(p) tokens inside place p.

A place/transition Petri net (PT-net) is a 4-tuple N = (P,T,F,W), where (P,T,F) is a net and
W : (P×T)∪ (T ×P) → N0 is a weight function satisfyingW (x,y) > 0⇔ (x,y) ∈ F .

Graphically, the numberW (x,y) is assigned to an arrow from x to y, ifW (x,y) > 1 (that means,

W (x,y) = 1 for arrows (x,y) without assigned weight). Figure 3 shows a marked PT-net having
only arc weights 1.

We introduce the following multisets of places:

• •t(p) =W (p, t) and t• (p) =W (t, p) for transitions t.

• •τ(p) = ∑t∈T τ(t) •t(p) and τ• (p) = ∑t∈T τ(t)t• (p) for multisets of transitions τ .

The de�nition of executions of PT-nets depends on the occurrence rule of transitions, stating in

which markings a transition (or a multiset of transitions) can occur and how these markings are

changed by its occurrence. A transition t ∈ T can occur in a marking m, if m≥ •t. A multiset

of transitions τ can occur in m, if m≥ •τ .

If a transition t occurs in a marking m, the resulting marking m′ is de�ned by m′ = m− •t+ t• .

If a multiset of transitions τ occurs in m, then the resulting marking m′ is de�ned by m′ =

m− •τ + τ• . We write m
t

−→ m′ (m
τ

−→ m′) to denote that t (τ) can occur in m and that its

occurrence leads to m′.

289

Figure 3 - A PT-net together with all of its executions represented by labelled partial orders (without

pre�xes).

The number W (p, t) represents the number of tokens consumed from p by an occurrence of t

and the numberW (t, p) represents the number of tokens produced in p by an occurrence of t.

The occurrence of a multiset of transitions τ in a marking m means, that all transitions in τ

occur in parallel.

For example, in the intial marking of the PT-net shown in Figure 3 the transitions r,s and the

multiset of transitions (r+ s) can occur.

The notion of execution depends on the chosen net semantics.

A sequential execution in m of a PT-net is a �nite sequence of transitions σ = t1 . . .tn such that

there are markingsm1, . . . ,mn satisfying m
t1−→m1

t2−→ . . .
tn−→mn. The PT-net shown in Figure

3 has the sequential executions r, s, rs, sr, rt, rst, srt and rts.

A step execution in m of a PT-net is a �nite sequence of multisets of transitions σ = τ1 . . .τn

such that there are markings m1, . . . ,mn satisfyingm
τ1−→m1

τ2−→ . . .
τn−→mn. The PT-net shown

in Figure 3 has as step executions all sequential executions and additionally (r+s), (r+s)t and
r(s+ t).

We write m
σ

−→mn to denote the occurrence of such executions σ .

Each sequential execution is also a step execution. The markings which can be reached from

the initial marking via sequential executions (resp. step executions) are called reachable.

If τ is a multiset of transitions which can occur in a markingm and τ = t1+ . . .+tn for transitions

t1, . . . , tn, then t1 . . .tn is a sequential execution in m, i.e. the transitions in τ can occur in m in

arbitrary sequential order.

We use partial orders labelled by transition names to represent single non-sequential runs of

PT-nets. The nodes of a partial order represent transition occurrences and its arrows an �earlier

than�-relation between transition ocurrences in the sense that one transition occurrence can be

observed earlier than another transition occurrence. If there are no arrows between two transi-

tion occurrences, then these transition occurrences are independend and are called concurrent.

Concurrent transition occurrences can be observed in arbitrary sequential order and in parallel.

This interpretation of arrows is called occurrence interpretation.

A labelled partial order (LPO) over T is a 3-tuple (V,<, l), where (V,<) is a partial order and

290

l :V → T is a labelling function on V . LPOs are also called partial words.

We only consider LPOs up to isomorphism, i.e. only the labelling of events is of interest, but

not the event names. Formally, two LPOs (V,<, l) and (V ′,<′, l′) are isomorphic, if there is a
renaming function I :V →V ′ satisfying l(v) = l′(I(v)) and v < w⇔ I(v) <

′ I(w).

In Figures, we do not show the names of the nodes of an LPO, but only their labels.

A linear order is an LPO (V,<, l)where< is a total order, i.e. there is no independence between

transition occurrences: ∀u,v ∈V : u < v∨ v < u. Linear orders represent sequential executions

of Petri nets in the obvious way and can be identi�ed with linear words. For example, Figure 3

shows LPOs representing the sequential executions rst, srt and rts.

The set of linearizations of an LPO is the set of linear LPOs which are extensions of this LPO.

For example, the LPOs representing rst, srt and rts in Figure 3 are are linearizations of the LPO

in the upper left corner. An LPO is uniquely determined by its set of linearizations.

A stepwise linear LPO is an LPO (V,<, l) where the relation co< is transitive. The maximal

sets of independent transition occurrences are called steps. The steps of a stepwise linear LPOs

are linearly ordered. Thus, stepwise linear LPOs represent step executions of Petri nets and can

be identi�ed with stepwise linear words. For example, Figure 3 shows LPOs representing the

step executions (r+ s)t and r(t+ s). The LPO in the upper left corner is not stepwise linear.

The set of step-linearizations of an LPO is the set of stepwise linear LPOs which are extensions

of this LPO. For example, the LPOs representing (r+ s)t and r(t + s) in Figure 3 are are step
linearizations of the LPO in the upper left corner.

Let N = (P,T,F,W,m0) be a marked PT-net. An LPO l po = (V,<, l) is a LPO-run of N if each
step-linearization of l po is a step execution of N. Figure 3 shows a marked PT-net togther with

all of its LPO-runs (without pre�xes).

An LPO-run l po of N is said to be minimal, if there exists no other LPO-run l po′ of N such that

l po is an extension of l po′.

From the de�nition follows that extensions of LPO-runs also are LPO-runs. This means, the set

of all LPO-runs can be deduced from the set of minimal LPO-runs.

In �gures we often omit transitive arrows of LPOs for a clearer presentation.

2.2 PNT Syntax

A PNT is a Petri net which, for every transition occurrence, may read a symbol i from an input

alphabet Σ and may print a symbol o from an output alphabetΩ. Graphically, these symbols are

annotated to transitions in the form i : o. If no input symbol should be read or no output symbol

should be printed, we use the empty word symbol ε as annotation. We use the basic Petri net

class of place/transition nets to de�ne PNTs.

De nition 1 (PNT) A PNT is a tuple N = (P,T,F,W,m0,Σ,σ ,Ω,ω), where

• (P,T,F,W,m0) is a marked PT-net called the underlying PT-net,

• Σ is a set of input symbols and σ : T → Σ∪{ε} is the input mapping,

• Ω is a set of output symbols and ω : T → Ω∪{ε} is the output mapping.

291

Figure 4 - A PNT translating an input word into an output word.

Figure 5 - Translating an FST into an equivalent PNT.

Figure 4 shows a PNT. In the next subsection we formally de�ne PNT semantics determining

the translation of partial language. Brie�y, input words are translated into output words, where

input and output words are derived from LPO-runs by renaming nodes with input and output

symbols according to the input and output mappings.

PNTs are a proper generilization of FSTs, i.e. each FST can be written as a PNT. Figure 5 illus-

trates the translation of FSTs into equivalent PNTs, where we call FSTs and PNTs equivalent if

they de�ne the same relation on languages. The main idea is to de�ne a PNT whose reachable

markings are all of the form, that exactly one place is marked by one token. Since each reach-

able marking represents a global state of the PNT, then each place represents a global state of

the FST. Technically, this can be derived by using only unbranching transitions, i.e. | •t| ≤ 1
and |t• | ≤ 1 for all transitions t.

292

Figure 6 - Construction of input and output words.

2.3 PNT Semantics

Considering non-sequential semantics of Petri nets, a PNT can be used to translate a partial

language into another partial language, where so called input words are related to so called

output words.

Input and output words are de�ned as LPOs (V,<, l) with a labelling function l : V → A∪{ε}
for some input or output alphabet A. Such LPOs we call ε-LPOs.

For each ε-LPO there exists an LPO with the same set of linearizations. This LPO can be

constructed by successively collapsing ε-labelled nodes in the following way:

• If l(v) = ε and •v = /0∨ v• = /0, then just delete v together with its adjacent edges.

• If l(v) = ε and •v 6= /0∧v• 6= /0, then delete v together with its adjacent edges and add the

edges •v× v• .

The derived LPO we call equivalent to the ε-LPO.

De nition 2 (Input and Output Words) Let N = (P,T,F,W,m0,Σ,σ ,Ω,ω) be a PNT and let

l po = (V,<, l) be an LPO-run of the underlying PT-net (P,T,F,W,m0).

The input word σ(l po) corresponding to lpo is the LPO equivalent to the ε-LPO (V,<,σ ◦ l).
The output word ω(l po) corresponding to lpo is the LPO equivalent to the ε-LPO (V,<,ω ◦ l).

Figure 6 shows an example for the translation of partial words in the presence of ε-inputs and

-outputs.

2.4 PNTs and FSTs

The next research steps are:

293

• De�nition and implementation of operations on PNTs as for FSTs, as for example ra-
tional operations (union, concatenation, closure), basic unary operation (reversal, inver-

sion, projection), fundamental binary operations (composition, union, difference) and op-

timization operations (ε-removal, minimization).

• Extension of PNTs by weights from a semiring.

Then PNTs and FSTs can be combined via such operations, since each FST is a special PNT.

In particular it will be possible to compose FSTS and PNTs and build hierarchical systems

consisting of FSTs on some levels and of PNTs of other levels in such a way. In the next section

we brie�y describe such a system in the area of speech dialogue systems. Weights may be used

in such systems to express uncertainty of recognition results and predictions of utterances of the

user.

3 Semantic Dialogue Modelling

In this section we brie�y present an application of PNTs within a new approach to develop the

cognitive user interface of a hierarchical cognitive dynamic speech signal processing system.1

The system includes a semantic level used to interpret syntactic regocnition results of speech

signals. These interpretations will be used to control a natural language dialogue, where user

queries can be freely formulated and a dialogue with the user is initiated in which step by step

missing information is collected in order to identify the action indended by the user together

with the data necessary to perform the action.

In our approach, the system successively integrates recognition results of user queries into a

state of information and generates a request concerning missing information together with an

expectation for the next user query. This expectation is used as a semantic-driven con�guration

of the speech recognizer in the next dialog step.

In the following we use PNTs to translate recognition results of speech signals on the syntax

level into semantic interpretations.

3.1 UMP Transducer

Figure 7 shows an application of PNTs in modelling semantics within a dialogue system. It

translates recognition results of speech signals on the syntax level into semantic interpretations.

For this little example we consider a system which knows about two persons: Peter Parker with

ID 1 and Parker Lewis with ID 2. To keep it very simple we consider also that only the following

four utterances should be understandable:

• Peter

• Peter Parker

• Parker

• Parker Lewis

1This systems is developed in cooperation with institutes from TU Dresden (R. Hofmann) and BTU Cottbus

(M. Wolff).

294

Parker:ε

ε:person

ε:firstnameε:Parkerε:2

ε:lastnameε:Parkerε:1

Lewis:ε

ε:person

ε:firstnameε:Parker

ε:2

ε:lastnameε:Lewis

Peter:ε

ε:personε:firstnameε:Peter ε:1

Parker:ε

ε:person

ε:firstnameε:Peter

ε:1

ε:lastnameε:Parker

Figure 7 - A Petri net transducer relating utterances to different meanings.

In this context understandable means translatable into semantic categories the system can deal

with. The categories for our example are person, rstname and lastname, all particular parts of

the actual names and the relevant IDs. All these are elements of the output alphabet. The input

alphabet is formed by all single words from the utterances. We call an input word utterance and

an output word meaning.

The shown PNT relates for example the utterance �Peter� non-ambiguously to the meaning

person. rstname.Peter.2. The utterance �Parker� in contrast has two different meanings because

it is unclear whether �Parker� is the �rstname of person 1 or the lastname of person 2. In

Figure 8 the corresponding partial orders (which are total orders in these cases) can be seen.

Peter
person

firstname

Peter

1

Parker
person

firstname

Parker

2

person

lastname

Parker

1

Figure 8 - Meanings for the utterances �Peter� and �Parker�.

Now let us take a look at the utterance �Peter Parker�. Its meaning contains two parts: �Peter�

is the �rstname of person 1 and �Parker� is the lastname of person 1. This time there is no

ambiguity in the �Parker�-part because for the utterance as a whole the other interpretation is

not feasible. In Figure 9 the partial orders for this situation are shown. The meaning represents

the situation that a person can be identi�ed by a combination of a �rstname and a lastname,

which are modelled as unordered categories.

As of now it is clear that the PNT from Figure 7 translates utterances our system should un-

derstand into meanings which are reasonable within the context of the system. So we do not

try to produce every possible interpretation for every possible utterance but provide the system

with a set of what we call Utterance-Meaning-Pairs (UMPs) [11] determining which utterances

can be unterstood and which meanings of utterances are available (this set is determined by the

295

Peter

Parker

person

firstname

Peter

1

lastname

Parker

Figure 9 - Meaning for the utterance �Peter Parker�.

application area of the system). PNTs relating utterances and meaning we callUMP tranducers.

3.2 Representation of Semantic Information

In the above example we used partial orders to represent meanings of utterances. This is not an

ad-hoc notation but a simpli�ed form of a general and universal formalism to model different

kinds of information within a speech dialogue systems on the semantic level, as for example

recognition results (as presented in the above example), the world model of the application

(which we described only be words in the above example), the information state, the user model

and semantic con�guration of the speech recognizer in each dialogue step.

This formalism is called feature-value-relation (FVR) [3] and allows to structure semantic cat-

egories of information and to relate data to semantic categories. In the above example, we

considered the semantic category person consisting of the sub-categories rstname and last-

name and related concrete �rstnames and lastnames of different persons from a database to

these categories.

Moreover, in FVRs it is possible to assign weights to semantic categories or data pieces. De-

pendent on the kind of information, these weights have a different interpretation, for example:

• Consider an utterance with two alternative meanings and a situation within a dialogue
where one of the meanings is more likely than the other. Then weights can express such

predictions. In every dialogue step the system generates an expectation concerning the

next utterance of the user in the form of an FVR. These weights get promoted downwards

through the hierarchy and help the speech recogniser to achieve more suitable results.

• The regognition result produced by the speech recognizer in general contains some degree
of uncertainty. This uncertainty also can be expressed by weights within an FVR.

Altogether, in the above example, a PNT is used to relate utterances to meanings given by FVRs

without weights. The extension of PNTs by weights is a topic of future research.

References

[1] BILJON, W. R. VAN: Extending Petri nets for specifying man-machine dialogues. Int. J.

Man-Mach. Stud., 28(4):437 � 455, 1988.

[2] HOFFMANN, R., M. EICHNER . M. WOLFF: Analysis of verbal and nonverbal acous-

tic signals with the Dresden UASR system. . Verbal and Nonverbal Communication Be-

haviours, . 4775 . LNAI, . 200� 218. Springer, 2007.

296

[3] HUBER, M., C. KÖLBL, R. LORENZ, R. RÖMER . G. WIRSCHING: Semantische Di-

alogmodellierung mit gewichteten Merkmal-Werte-Relationen. . Proceedings of �Elektro-

nische Sprachsignalverarbeitung (ESSV)�, . 53 . Studientexte zur Sprachkommunikation,

. 25�32, 2009.

[4] KUSKE, D. . I. MEINECKE: Branching Automata with Costs - A Way of Re!ecting Paral-

lelism in Costs. Theoretical Computer Science, 328:53 � 75, 2004.

[5] LODAYA, K. . P. WEIL: Series-parallel Languages and the bounded-width Property. The-

oretical Computer Science, 237:347 � 380, 2000.

[6] MOHRI, M.: Weighted Automata Algorithms. Springer, 2009.

[7] RAYMOND, C., F. BÉCHET, R. D. MORI . G. DAMNATI: On the use of nite state trans-

ducers for semantic interpretation. Speech communication, 48(3-4):288 � 304, 2006.

[8] WANG, F. Y., M. MITTMANN . G. N. SARIDIS: Coordination speci cation for CIRSSE

robotic platform system using Petri net transducers. Journal of Intelligent and Robotic

Systems, 9:209 � 233, 1994.

[9] WANG, F. Y. . G. N. SARIDIS: A model for coordination of intelligent machines using

Petri nets. . Proceedings of the IEEE International Symposium on Intelligent Control, .

28�33. IEEE Comput. Soc. Press, 1989.

[10] WIRSCHING, G.: Nichtsequentialität in der Sprachverarbeitungmit FST . .Proceedings of

�Elektronische Sprachsignalverarbeitung (ESSV)�, Studientexte zur Sprachkommunika-

tion, 2012.

[11] WIRSCHING, G. . C. KÖLBL: Language Modeling with Utterance-Meaning-Pairs. .

2011-12, Institute of Computer Science, University of Augsburg, 2011.

[12] WOLFF, M.: Akustische Mustererkennung. Habilitation, 2009.

297

	37_Lorenz_A4_angepasst

