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Abstract: Humans can easily estimate the rate of speech of a dialog partner in a

conversation. Hence, the speaking rate can be regarded as a quite obvious prosodic

characteristic of human speech. In particular, it provides information on different

emotional dispositions of our dialog partners. However, most machines still lack of

such human abilities and therefore research activities have started to focus stronger

also on the emotional aspect of speech. In this paper we introduce a hierarchical

classifier for emotions from speech. In a two step approach first a binary classifi-

cation in low and high arousal emotions takes place on basis of the speaking rate

feature. Afterwards, a second classification step determines the actual emotion.

The hierarchical classifier consists of three Multi-Layer Perceptrons (MLP) trained

on cepstral turn-level features, while the speaking rates are determined by apply-

ing a broad phonetic class recognizer. We present the results on the emotionally

expressive EMO-DB corpus and compare them with results from a single MLP

representing a flat approach with no hierarchical structure. An increase of accuracy

up to 3.0% in certain emotion categories is reported.

1 Introduction

1.1 Determination of the speaking rate

Exploiting information about the emotional state of a user, machines can be enabled to adapt

their dialog strategy, depending on the emotion of the user and hence react in a more appropriate

and empathic manner. While ongoing research of other groups often bases on pooling together

huge numbers of (high level) features in order to fully exploit the feature space our approach

however aims stronger at providing a rather small feature set with competitive performance. Es-

pecially small devices with low computational power (smart phones) benefit from such a sparse

approach.

In order to take advantage from the correlation between a person’s emotional state and his speak-

ing rate, one has to find an automated robust method for speaking rate determination. Humans

provide this ability at least on a subjective level using categories like slow, normal or fast. An

automated recognition of the speaking rate however is a challenging task. Typically estimated

from samples of connected speech uttered spontaneously or read out, it is supposed to reflect

the speed at which a person executes articulatory movements for speech production ([4], [5]).

As a unit of measurement often either words per minute (wpm) or syllables per minute (spm)

are used. Especially, the wpm measure suffers from varying numbers of syllables in the word

[3]. This is problematic in languages like German where compounding of substantives theoret-

ically can generate arbitrary long words. Hence nowadays, spm is widely used for measuring
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speaking rates. Given a speech sample it is defined as the number of syllables divided by the

duration of the sample. Even if this measure can be regarded as more language independent

than wpm it provides problems with respect to the intrinsic duration of syllables.

Engineering solutions approach the problem mainly from two directions. Exploiting energy

and periodic measures by applying convex-hull algorithms syllables can be detected directly on

the speech signal [14]. Including the first spectral moment of full-band energy and compressed

sub-band energy correlation a robust syllable detection algorithm was introduced by Morgan

and Fosler-Lussier [8]. Further, Heinrich [6] presents a method on rhythmicity features, where

the speaking rate is correlated to peaks in the short-time energy envelope of the speech signal.

The second approach follows automated speech recognition (ASR) procedures and utilizes the

duration of recognized phonemes for speaking rate estimation. Especially, broad phonetic class

recognizers which can distinguish between groups of vowels and consonants have been proven

to be suitable for speaking rate estimation [10]. Due to the small number of broad phonetic

classes (typically 6-8), they are less sensitive with respect to recognition errors than single

phoneme recognizers used in standard ASR systems, which often base on up to 50 classes.

Our approach for speaking rate estimation implements a broad phonetic class recognizer that

distinguishes eight phonetic classes. For training we apply the Hidden Markov Toolkit (HTK)

[15] on a standard corpus in English language. We define the unit representing the speaking

rate as phonemes per second (pps).

1.2 The role of the speaking rate in emotional speech

In the field of multidimensional emotion recognition from speech (for instance in the Valence-

Arousal-Dominance space) the speaking rate carries important information about the arousal of

a user who is verbally interacting with a machine. Already Murray and Arnott [9] presented

emotional voice characteristics for Ekman’s basic emotions. Their qualitative results are shown

in Table 1. The specifications are based on a comparison of the affective/emotional voice to

the neutral voice characteristics. We follow an approach comparable to the one of Koolagudi

[7] who presents a two stage emotion recognition approach based on speaking rates. In a first

stage active, normal, and passive emotions are separated into three gross classes using Mel Fre-

quency Cepstral Coefficients and prosodic features, while in the second state the single emo-

tions are classified within each class. In contrast to our approach, here the speaking rate does

not contribute in form of a single number. Instead it appears in a hidden, rather abstract form

represented by a complete feature set.

Table 1 - Speaking rates for Ekman’s basic emotions according to [9]

Disgust Sadness Joy

very much slower slightly slower slower or faster

Neutral Anger Fear

- slightly faster much faster

1.3 Structure of the paper

The remainder of the paper is organized as follows: Section 2 introduces the corpora, while

results of the broad phonetic class approach are described in Section 3. In Section 4 we apply

our speaking rate model on an emotional database and provide emotion specific speaking rates.

Section 5 introduces the hierarchical classifier and shows the advantages in comparison to flat

classifier. Section 6 summarizes the results and gives a conclusion.
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2 Corpora

2.1 RM1 corpus

The DARPA Resource Management Continuous Speech Corpora (RM) [12] consist of digi-

tized and transcribed speech in two main sections, RM1 and RM2. The material is in English

language and consists of read sentences modeled after a naval resource management task.

In order to build a universal model we chose the speaker independent material of RM1 which

contains 80 speakers, each reading 42 sentences from the RM text corpus. The complete ma-

terial consists of 2880 files. We selected this database as it contains short utterances lasting in

most cases between two and four seconds. Hence, we were able to determine the speaking rates

over the complete utterance, as we assume rather constant speaking rates in utterances lasting

only a few seconds. Further, we wanted to show that also a smaller corpus is capable of training

a high performing system in order to determine speaking rates robustly.

2.2 Berlin Database of Emotional Speech

For affected speech we decided to use the popular studio recorded Berlin Emotional Speech

Database (EMO-DB) [2]. This database contains acted emotional speech samples. Ten profes-

sional actors (five male and five female) spoke ten German emotionally undefined sentences. In

order to provide reliable data in each emotion category 20 evaluators took part in a perception-

test. Selecting only those emotions, which provide a level of naturalness not less than 60% and

a level of recognizability not less than 80%, we reduced the data to 493 utterances. The single

emotions however, are not equally distributed within the material: anger dominates with 28%

while disgust is underrepresented with only 8%. The other emotions contribute approximately

12% each.

3 Estimation of the speaking rate by applying a Broad Phonetic Class
Recognizer

3.1 Method

The core module of the recognizer is represented by a Hidden Markov Model (HMM). Such

stochastic models have been established in ASR for a long time [13]. We applied the same

features and HMM structure as for a state-of-the-art speech recognizer. Table 2 summarizes the

parameters and configuration settings.

Table 2 - Model parameters for feature extraction

Feature type Characteristic

HMM type 3 state left-to-right

Gaussian mixtures 8

Training signal feature 39 MFCC 0 D A

Sampling rate / Hamming window 10ms / 25ms

Number of filterbanks / cepstral lifters 26 / 22

Implementing a broad phonetic class recognizer, the main difference to a ASR system is the

lexicon, which provides transcriptions of all occurring words into their corresponding sequences

of phonemes. In our case, however it only contains the mapping of phonemes contained in each

broad phonetic class to the class label (compare Table 3). Two additional classes handle silent

parts within speech. One detects hardly perceivable short pauses (sp) occurring between single

words, while the second class covers longer parts of silence (sil).
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Table 3 - Broad Phonetic classes
Phonetic Class Related Phonemes Label

Monophthongs ao aa iy uw eh ih uh ah mt

ax en ae er

Diphthongs ey ay ow aw oy dt

Stops + Affricatives p pd b t td d dd k kd g ch jh st

Fricatives f v th dh s z ts sh zh hh fr

Nasals m n ng na

Glides + Liquids l el r dx y w li

Short pauses sp sp

Silence sil sil

Since each phonetic class represents a group of phonemes with similar characteristics, we

only lose information about the actual phoneme during the recognition process. However, the

information about the presence of a phoneme is still maintained. Hence, within the following

considerations we will simply use the term phoneme and do not longer distinguish between

phonetic classes and phonemes. The outputs of the HTK tool HVite are further processed in

order to count the number of phonemes and to compute the speaking rate on basis of the single

durations. Finally, we define the speaking rate as the quotient of the number of phonemes and

the total duration. Silent parts are not counted as phonemes, but contribute to the total duration.

So, for a given number of phonemes an increase of silence decreases the speaking rate.

3.2 Results of the Broad Phonetic Class Recognizer

To prove the accuracy of our results we compared the reference speaking rates with those of

the corresponding model output. Here, we distinguish two types of errors: samples which are

recognized as too fast and those which are recognized as too slow with respect to the reference

rates. We analyzed these two phenomena separately defining the error as the difference between

the measured and the reference rate of speech. Looking at the data used for training 52% (av.

error: −1.05 pps, std: 0.61) are recognized as too slow and 38% (av. error: 0.90 pps, std: 0.56)

as too fast. Only slightly worse are the results on the test data in which only speakers occur who

were excluded from the training material. Here 48% (av. error: −1.16 pps, std: 0.75) of the

samples are recognized as too slow and 44% (av. error: 1.03 pps, std: 0.63) as too fast. In all

cases the absolute average error is about 1 pps, which corresponds to a relative error of 8.1%. In

terms of an average RM1 utterance, which consists of 43 phonemes and lasts about 3.5 seconds,

an error of 1 pps results in ±3.5 extra phonemes with respect to a complete utterance. The error

mainly originates from phonemes being either overlooked (deletion error) or added (insertion

error) during the recognition process. A further unfavorable influence on the result accounts to

an incorrect determination of silent parts. In our model this type of error plays a minor part: in

average the total duration of estimated silence varies not more than 5.8% from the true part. For

a detailed description of the method and the results compare [11].

4 Analysis of speaking rates in emotional speech

Applying our model for speaking rate estimation on data from the emotionally expressive EMO-

DB corpus we found 4 groups which can be distinguished on 95% significance level. Table 4

summarizes average speaking rates for each emotion. Their individual means cover a range

between 9.9 pps (sadness) and 16.5 pps (fear) while the intra class standard deviations vary

between 1.2 pps (disgust) and 2.5 pps (fear). The results reflect partly those of Murray [9]:
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f ear shows the highest speaking rates, followed by joy and anger. Disgust and sadness show

the lowest rates. In contrast to Murray’s result neutral is slightly faster than joy and anger. The

last column of Table 4 shows the average offsets to the target rates. One sees that the errors are

a bit higher than those on the test data of RM1. Especially, active emotions which are uttered

faster tend to be classified as too slow. But still, our model is robust with respect to the German

language.

Table 4 - Clusters of distinguishable emotions

emotion cluster av. speaking av. error [pps]

rate [pps] too slow / too fast

fear 16.5 -1.31 / 1.18

neutral 15.3 -1.13 / 0.95

joy 14.5 -1.25 / 1.06

anger 14.0 -1.20 / 0.95

boredom 13.5 -1.15 / 1.11

disgust 10.5 -1.08 / 1.09

sadness 9.9 -0.97 / 1.12

5 The hierarchical classifier

In this section we introduce a hierarchical MLP classifier for emotion recognition. Beside other

classifiers like Support-Vector-Machines or HMMs the use of Artificial Neural Networks is

state-of-the-art in emotion recognition [1].

5.1 Applied features

We apply an established feature set, based on Mel Frequency Cepstral Coefficients (MFCCs),

including the speaking rate as a further feature. From the EMO-DB material we extracted the

energy, the first 12 MFFCs, and the zero-coefficient (F0). Further, for each parameter the cor-

responding values of the first and second derivative were determined. Hence, the final feature

set consists of 42 features on frame-level basis. In order to apply these features in MLP clas-

sifiers the following 8 turn-level features on utterance level were computed on each of the 42

frame-level features.

1. mean

2. standard deviation

3. 10th percentile: covering 10% of the observations

4. 25th percentile: covering 25% of the observations

5. 50th percentile: median

6. 75th percentile: covering 75% of the observations

7. 90th percentile: covering 90% of the observations

8. zero-crossings: number of zero-crossings/100 samples
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A subset of these features was already successfully applied by Albornoz [1]. We extended this

feature set by adding derivatives and concentrating more on percentile values, than on minimum

and maximum values. Finally, we end up with a feature set of size 336 plus the speaking rate.

As the speaking rate is already a turn-level feature it can be applied directly without further

processing.

5.2 General MLP configuraions

All MLP classifiers were implemented with Matlab’s Neural Network-Toolbox. Beside the

input and output layer all MLPs contain one hidden layer. Applying the full feature set, we

found following parameter characteristics to produce optimal results:

• Resilient-Back-Propagation (trainrp) for training

• Fermi function (logsig) for the hidden neurons

• Hyperbolic tangent function (tansig) for the output neurons

• 100 neurons in hidden-layer

The learning rate is automatically adapted. In order to take into account both the influences of

varying training/test sets and different weight initializations all presented results are the average

of 10,000 single trials.

5.3 1st Hierarchy: low and high arousal emotions

In this pre-classification step we take advantage from the speaking rate feature. Taking into

account the results presented in Table 4 we found out that reducing the 4 groups to 2 yields the

best results. The 2 classes can separated more efficiently with respect to the occurring speak-

ing rates. The emotions assigned to each group are shown in Table 5. Within the following

considerations we will address the two groups as high arousal (ha) and low arousal (la). Al-

though, anger is normally rated as (ha) slightly better results were achieved with the presented

configuration.

Table 5 - Pre-classification
high arousal (ha) low arousal (la)

fear, neutral, joy anger, boredom, disgust, sadness

Since the speaking rate alone is not capable to provide a satisfactory distinction between the

two groups, a sparse subset of the remaining features was determined in order to gain repre-

sentative classification results. Finally, we applied 12 MFCCs, F0, and the energy in addition.

Therefore, the MLP representing the first hierarchy has 14× 8+ 1 = 113 input neurons and 2

output neurons (la and ha).

5.4 2nd Hierarchy: emotion recognition

After a sample was classified as la or ha in this step the actual classification of the emotion

happens. Therefore, two independent MLPs classify the emotion within each group. For this

final classification step we apply the whole feature set, so that both MLPs provide 337 input

neurons. The outputs however correspond to the number of emotions in each group, which is 3

for high arousal group and 4 for the low arousal group.
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5.5 Results of the MLP

The presented results are maintained from evaluating the accumulated confusion matrix over all

trials. Also, the weighted accuracy was computed as the average of the single recognition rates.

Within the binary pre-classification step (ha or la) we obtained an accuracy of 86.7% with a

balanced level of confusions.

Table 6 summarizes our final results compared to the results obtained from a baseline MLP

providing a flat hierarchy and being trained on the complete feature set. In all categories but the

neutral an improvement of the recognition performance can be reported. Especially anger and

joy, which normally tend to be confused easily, profit from the chosen hierarchy structure: since

joy is in the ha-group and anger is in the la-group they are separated within the pre-classification

step and cannot be confused any longer. Neutral emotions however show a huge bandwidth of

speaking rates and do not profit from such a hierarchical approach.

Further, our results outperfom those of the hierarchical classifier by Albornoz [1], who reported

a classification rate of 66.83% using MLPs on EMO-DB.

Table 6 - Accuracies for the different emotions
emotion hierarchical classifier [%] baseline [%] improvement [%]

fear 68.95 68.08 0.87

neutral 76.87 77.53 -0.66

joy 55.15 52.11 3.04

anger 92.13 90.26 1.87

boredom 86.22 84.84 1.38

disgust 88.34 87.42 0.92

sadness 91.78 90.99 0.79

weighted accuracy 79.92 78.74 1.17

6 Summary & Conclusion

Analyzing emotion-colored speech we obtained individual speaking rates for different emo-

tions. Exploiting the correlation of speaking rates and shown emotion we presented a hierarchi-

cal classifier which improves emotion recognition in average by 1.17%. Further, the achieved

average classification rates of 79.92% are competitive with current approaches applying Neural-

Network classifiers on acted data (compare [1]).

In future research we want to test our models on corpora, which provide more natural emotions.

Also, a normalization of the speaking rate with respect to the age of the speaker is essential in

realistic scenarios: younger people tend to talk faster than older ones.
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