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Abstract: An algorithm for word stress assignment in German compounds is in-

troduced. First, a metrical tree is automatically derived from adjacent morpheme

cohesion scores which are based on co-occurrence statistics. This tree is used to

identify the stressed compound part by applying the compound stress rule of metri-

cal phonology. Then the stressed syllable is identified within this compound part by

means of a k-nearest-neighbor classifier using weighted vowel quantity and sylla-

ble coda type features. The accuracy of the metrical compound analysis amounted

to 83%. Compound stress assignment was successful in 95%, and stress location

within multi-syllable word stems in 84% of all cases.

1 Introduction

For languages like German with a highly productive lexical compounding tendency word stress

assignment is to be carried out in two steps: the identification of the stressed compound part, and

the localisation of the stressed syllable within this part. The first task can be accomplished by

adopting concepts from metrical phonology [7]. In this framework the relations of compound

parts can be hierarchically represented by means of metrical trees which are labeled by the

compound stress rule CSR stating:

CSR: Given constituent [AB], B is strong s if only B is further divisible, else A.

An example is given in Figure 1. The stressed compound part is identified by tracing the s

branches to the corresponding leaf. For the constituent decomposition collocations like Bahn+hof

(station) are not considered to be further divisible and thus do not attract stress in words like

’Haupt+[bahn+hof] (central station).

Stress location within a compound part is determined by stress-attracting affixes as in pass+’abel

(acceptable) and, if there is no such affix, by several stress constraints for simplex (i.e. monomor-

phemic) word forms. For German the most important constraints are:

• the 3-syllable window constraint stating that stress is located within the last 3 syllables of

a word,

• the Final-schwa constraint: if a final syllable is reduced, then the penult is stressed as in

Ta’pete (wallpaper), and

• the Closed-penult constraint saying that the closed penult hinders stress to move further

left (Hi’biskus; hibiscus).

A more detailed presentation of German word stress constraints including numerous exceptions

can be found in [5]. Automatic stress assignment using syllable characteristics is carried out

137



e.g. by means of neural nets [4] or instance-based learning [2]. The decision tree approach of

[10] additionally includes morphologic features.

In the following sections the steps of word stress assignment are introduced: the metrical com-

pound decomposition and the instance based assignment of word stress within the stressed

compound part.

2 Metrical compound decomposition

The compound analysis to identify the stressed compound part consists of a morphological

segmentation and the induction of a metrical tree for this segmentation.

2.1 Morphological segmentation

Our morphological segmentation algorithm for concatenative morphology has first been intro-

duced in [12] and requires:

• a morpheme lexicon L = {< x,m >} containing morphemes x and their classes m,

• a specification of morphotactics t : m×m −→ {0,1} constraining the morpheme class

combinations, and

• a specification of the compatibility c : w×m −→ {0,1} of a word’s part of speech la-

bel w and the class m of word-final morpheme to avoid erroneous segmentations like

∗kombi+niere (estate kidney instead of combine).

The recursive splitting function f : s −→ x+ y places morpheme boundaries + within strings s

if the following constraints are fulfilled:

1. x is in the lexicon, i.e. ∃m :< x,m >∈ L,

2. y is further divisible or in lexicon, i.e. f (y) holds or ∃m :< y,m >∈ L,

3. the morpheme class pair for x and the first segment of y does not violate morphotactics:

t(mx,my1
) = 1, and

4. the morpheme class of the last y-segment is compatible with the word’s part of speech:

c(w,myn
) = 1.

This procedure results in a concatenative flat morphological segmentation x1 . . .xn. From this

segmentation a compound decomposition [x1 . . .xi][xi+1 . . .xn] is deduced if xi is a linking mor-

pheme or if the morpheme classes xi and xi+1 belong to the following sets respectively:

• mxi
∈ {LexicalMorph, InflectionEnding, Suffix, OrdinalEnding},

• mxi+1
∈ {LexicalMorph, Prefix, Adverbial, VerbalParticle}.

As an example, this way bund+es+haus+halt+s+aus+schuss (federal budget committee) is

decomposed into [bund+es] [haus] [halt+s] [aus+schuss].

2.2 Metrical tree induction

From the flat compound representation derived from the preceeding segmentation a hierarchic

representation is derived by recursively splitting the compounds at coherence minima and by

pruning the resulting trees in order to merge collocations.
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2.2.1 Coherence-based tree creation

The coherence of adjacent compound parts x and y is measured by means of the Likelihood

ratio of two hypotheses:

H0: x and y are independent

H1: x and y are mutually dependent
(1)

This technique has originally been used to extract collocations [3] and will therefore also be

helpful for tree pruning as is explained in the following section. It serves to compare the

hypothesis-related likelihoods L(H0) and L(H1) for the observed frequencies k for x + y co-

occurrence and N − k for the occurrence of y without x given the hypothesised probabilities:

• H0 (independence): P(y|x) = p = P(y|¬x)

• H1 (dependence): P(y|x) = p1 6= p2 = P(y|¬x)

The likelihoods L(H0) and L(H1) for k and N − k given the probabilities p, respectively p1

and p2, are calculated assuming a binomial distribution, and their ratio is transformed into a

χ2 value by taking −2ln
L(H0)
L(H1) as is described in [8]. This transformation allows for a gradual

interpretation of coherence: the higher χ2, the higher the dependency between x and y.

Given the coherence values of all adjacent compound parts a coherence tree is induced by

recursively splitting the compound at local coherence minima which is schematically shown in

Figure 1.
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Figure 1 - A metrical tree for the compound [braun][kohle][berg][bau][skandal][nudel] (brown coal min-

ing sleazebag) inferred from compound part coherences. Right: Coherence values of adjacent com-

pound parts. Left: Resulting tree by recursive splitting at local coherence minima and application of

the compound stress rule.
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2.2.2 Pruning

The pruning of the tree consists in merging adjacent compound parts x and y which are identified

as collocations. Generally, collocations are characterised by:

• a high degree of coherence, and

• semi-compositionality, i.e. the meaning of x+ y cannot be composed by the meanings of

its parts: ||x+ y|| 6= ||x||+ ||y||.

Following [3] the high degree of coherence can simply be expressed by high χ2 values which

have been derived by the preceeding processing step.

For semi-compositionality we propose a distributional measure based on the intuition that the

lexical contexts of collocations and their final parts, e.g. of Bahnhof (station) and Hof (yard) are

more distinct than for non-collocative compositions like Sporttasche (sports bag) and Tasche

(bag), since the latter pair is interchangeable in more contexts than the first. To account for this

notion we adopt the information radius IR measure, which is already established in measuring

semantic similarity [8]. It quantifies the difference between the word probability distribution p

in the context of Bahnhof as opposed to q in the context of Hof as follows:

IR(p,q) = D(p||
p+q

2
)+D(q||

p+q

2
), where (2)

D(p||q) = ∑
i

pi log2

pi

qi
. (3)

Here, the context has been defined as the word history in a bigram model trained on a German

text corpus. The Relative Entropy D(p||q) gives the number of bits additionally needed to

encode events i, for which the distribution p holds, by a code based on q. IR(p,q) is a symmetric

version of this divergence measure and thus a proper distance metrics. Following our intuition

it is expected that semi-compositionality yields high information radius values.

Indeed, as shown in Figure 2 significant differences for χ2 and IR values have been found in

the expected direction (two-sided Welch tests; for χ2: t74 = 3.86,α = 0.001; for IR: t318 =
1.83,α = 0.05. The IR difference is not apparent looking at the boxplots, nevertheless, the

mean IR values are 1.83 for collocations and 1.76 for non-collocative parts).

For tree pruning the following thresholds were derived on a small data sample by Simplex

optimisation: Adjacent compound parts with an IR > 1.96 and a χ2 value > 90 are considered

as collocations and therefore merged.

2.2.3 From coherence to metrical trees

As shown in Figure 1 the coherence tree is transformed into a metrical tree by assigning s

(strong) and w (weak) labels to its branches following the CSR. The stressed compound part is

identified by tracing the s branches starting from the tree root.

3 Instance-based learning of word stem stress

Based on the morphological information which is returned by the procedure described in section

2.1, in some cases the stressed syllable can directly be localised within its compound part. Such

trivial cases consist of derived word forms containing stress-attracting affixes as Akzept’anz

(acceptance), and of one-syllable stems with or without unstressed affixes as Haus (house) and

Be+’geh+ung (inspection).
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Figure 2 - Left: χ2 co-occurrence values of collocations (e.g. Bahn+hof) and real compound parts (e.g.

Sport+tasche). Right: Information radius values of collocations and real compound parts.

For all other multi-syllable word stems derived by affix stripping, a syllabified canonic tran-

scription is generated by a grapheme-phoneme converter [10], and stress is located within the

stem by instance-based learning. Word stems are represented by six features derived from the

canonic transcription:

• vowel quantity ∈ {reduced, short, long, 0}, and

• coda type ∈ {open, closed, 0}

each extracted for the ultimate (final), penultimate and antepenultimate syllable. 0 is assigned

for absent values in words shorter than three syllables. The chosen features capture the stress

constraints formulated in section 1. The dependent variable to be predicted from these features

is the absolute position of the stressed syllable relative to the ultimate and has one of the follow-

ing values: {0,1,2,3}, 0 indicating a stressed ultimate, 1 a stressed penultimate and so on. Our

training data did not contain words longer than four syllables. As an example, Lawine (deluge)

with the transcription [la.’vi:.n@] is stored as the following <feature vector, target> instance in

the memory M: < [short, open, long, open, reduced, open], 1>.

In application, for an incoming syllabified transcription of a word stem the k nearest neighbors

are derived from M and the stress position occuring most often among these k objects is assigned

to the input. On a small development set k was set to 15 by Simplex optimisation. Objects were

compared by means of the weighted Hamming distance D as follows:

D(a,b) = ∑
ai 6=bi

wi, (4)

i ranging over the elements of the objects’ feature vectors a and b. wi is the weight of the

underlying feature X , which is set to the mutual information I between X and the dependent

word stress position variable Y :
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wX = I(Y ;X) = H(Y )−H(Y |X). (5)

H(Y ) and H(Y |X) represent the entropy and conditional entropy of the word stress position,

respectively. wX therefore makes explicit the information gain for predicting word stress given

that the value of feature X is known.

4 Results

4.1 Compound level

For a sample of 700 compounds containing more than two parts the accuracy of the hierarchical

compound analysis based on the morphological segmentation and the coherence tree induction

amounted 83%. Compound stress assignment was successful in 95% of all cases.

The adequacy of the compound stress rule expressed in the conditional probability P(stress

correct|compound analysis correct) is 0.96, indicating that for the used data this rule is appro-

priate.

4.2 Word stem level

As can be seen by the mutual information values in the left plot of Figure 3 vowel quantity

is generally more influential for word stress assignment than the presence or absence of the

syllable coda. Furthermore, the characteristics of the last syllable is most influential for stress

location.

Shown in the right plot of Figure 3, in a 10-fold cross validation task on 1300 non-trivial cases,

i.e. multi-syllable word stems, the k-nearest-neighbor classifier successfully predicted the stress

location in 84% of all cases.

5 Discussion

5.1 Metrical tree induction

In this study a new procedure to automatise the induction of metrical trees has been introduced

which is based on a statistical notion of compound part coherence and the well-known com-

pound stress rule from metrical phonology. Initial results of 83% accuracy for tree construction

and 95% for stress assignment are encouraging. The CSR turned out to be highly adequate for

our data.

Nevertheless, the identification of collocations for tree pruning needs further elaboration. Col-

locations indeed show significantly higher χ2 and information radius values as opposed to other

compound part pairings, but the discriminative power of these measures is not very high as can

be seen by the largely overlapping boxplots in Figure 2, especially for IR. It will be explored

in future studies whether a more sophisticated definition of the examined word context will

improve the contribution of the IR measure.

Rhythmic constraints as avoiding stress clashes [7] or long sequences of unstressed syllables

are not yet implemented in our procedure. The latter constraint, which might favor the pat-

tern Braunkohlebergbau’skandalnudel over the predicted ’Braunkohlebergbauskandalnudel (cf.

Figure 1), can be addressed by including the concept of minor stress [5] which can be realised

by applying the CSR in parallel for subtrees originating from the tree root, thus applying it

separately for Braunkohlebergbau and for Skandalnudel in the example given above.
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Figure 3 - Left: Mutual information between syllable features and word stress position. apu – ante-

penult, pu – penult, u – ult, q – vowel quantity, c – coda type. Right: 10-fold cross-validation of the

KNN classifier.

Another challenge not addressed yet arises from extrinsic factors for stress shift like contrast

constructions as Arbeit’nehmer und Arbeit’geber (employees and employers) as opposed to

’Arbeitgeber.

5.2 Instance-based word stem stress assignment

In contrast to previous work of the author [11] the entity chosen for stress assignment for the

current machine learning approach is the word stem and not the syllable. This difference also

implies different target values to be predicted, namely the syllable index instead of the binary

distinction stressed vs. unstressed. Since in contrast to compounds simplex word forms cannot

be arbitrarily long, the set of target values is still finite, and for our data limited to integers from

0 to 3. As opposed to the strictly syllable-based approach in [11] the global word pattern can

be taken into consideration for stress localisation.

Among the issues not addressed by the current approach are stress shifts (’Doktor vs. Dok’toren)

and homographs like durchlaufen in transitive (durch’laufen) vs. intransitive (’durchlaufen) us-

age.

Even when leaving aside these cases, the word stress constraints listed in section 1 are not

sufficient to describe all stress patterns. Furthermore, numerous contradicting cases can be

found (see e.g. [5]), as for example ’Abenteuer (adventure) violating the 3-syllable window

constraint. Therefore, a machine learning approach like instance-based learning is expected to

be more robust than rule-based algorithms.

In addition, due to intrinsic equivalences the chosen approach of instance-based learning can

easily be linked to fundamental research frameworks as Exemplar Theory [9, 6]. This relation

allows for generating hypotheses and models for topics like second language acquisition about

how speakers might stress unknown words of a foreign language.

Weighting schemes like the mutual information between features and stress location as pro-
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posed here, give insight in the relative contribution of features and could be adopted for the

fine-tuning of Exemplar Theory models.
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