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Abstract: Hidden Markov Models assume that adjacent feature vectors are 
statistically independent. Yet the use Δ and ΔΔ operations, super-vectors and LDA 
leads to highly correlated feature vectors contradicting the independence 
assumptions. Experiments [1] have shown, that more sophistical acoustical models 
lead to no substantial decrease in error rate. In order to investigate these findings we 
use simulated feature vectors having probability distributions similar as derived from 
real speech data. The used distribution model exactly the statistical properties of 
adjacent feature vectors. We made recognition experiments on 607 segments derived 
from tri-phones, which were realized by two feature vectors. The experiments 
confirm that the use of second order statistics does not improve the recognition rate 
substantially.  Further we can show with simulated features that the error rate 
decrease with decreasing degree of correlation. 

1 Introduction 

Hidden Markov Models assume that adjacent feature vectors are statistically independent. Yet 
the use Δ and ΔΔ operations, super-vectors and LDA leads to highly correlated feature vectors 
contradicting the independence assumptions. Further Hidden Markov Models assume that 
within a state the features are distributed identically. These drawbacks are called the i.i.d 
(independently distributed, identically distributed) problem. To overcome the i.i.d. problem 
sophisticated segment models [2] and recently trajectory models [1]  inspired from speech 
synthesis [3] have been investigated. The results shown in [1] lead to the conclusion that 
acoustical models using different distributions within a state improve recognition performance 
significantly, but no significant improvements could be achieved by using acoustical models 
modeling statistical dependency. In order to understand the latter finding, in this paper 
experiments with simulated features generated by the Monte Carlo Method [4] were 
performed. The Monte Carlo Method allows to generate features with different degree of 
correlation between feature vectors given by predefined distribution function of the features. 
We experiment with distribution functions, which are derived from the emission probabilities 
of a HMM based recognition system trained on a large US-English  database. In order to 
study the impact of correlation we evaluate the error rate on segments derived from tri-
phones. The segments are modeled by chunks as described in [6] (see also chapter 2).  The 
paper is organized as follows:  

- Chapter 2 presents the statistical framework describing the concept of chunks, the used 
recognizer, the evaluation based on error rates and Shannon's entropy, and the 
application of the Monte Carlo Method . 

- Chapter 3 describes, how the feature vectors are simulated with predefined 
distributions. 

- Chapter 4 shows the experimental result, which are concluded in chapter 5. 

2 The Statistical Framework 

The concept of chunks [6] is derived from HMMs, where tri-phones are used as the basic 
phonetic units. The tri-phones are build up by three segments, which can be interpreted as the 
onset, middle and offset of a phone. In HMM technology each segment  is modeled by a state.  
The acoustical model of a segment Qi is defined by 
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                                                                                    (1) 

 The duration of a segment is modeled by l and aii, whereas p(X|Qi) - the emission 
probabilities - describe the statistic properties of a segment independent of its duration.  

In the following we define as a chunk a sequence of feature vectors        as defined in (1) 
assigned  to a segment Qi. The index l  denotes the length (duration ) of a chunk. The index ν 
denotes the position of a feature vector within a chunk. Given these notations we define an 
acoustic model for segments:                                                                
We call this model a trajectory model, because along the trajectory of a segment given by a 
chunk of length l for each position Ȟ and each length l a specific distribution pȞl(Xn-ν+1|*,Qi) is 
assigned. Compared to (1) these distributions generalize the emission probabilities and are 
called ‘Trajectory Emission Probabilities - TEPs‘. The TEPs are approximated by First Order 
(FO) distributions                 and Second Order (SO) distributions                      leading to the FO and SO trajectory model:                                                                           (2)                                                                              (3) 

The evaluation of the two trajectory models is performed in recognizing segments Qi. In 
section 2.1 the recognizer and the segment error rate are defined. Section 2.2 defines 
Shannon's Entropy, which is linked to the error rate by bounds. Finally in section 2.3 the 
application of the Monte Carlo method is sketched. 

2.1 Recognizer and Segment Error Rates 

To determine segment error rates (SER) we describe in the following recognizers based on 
first order trajectory model (2). For second order models (3) the recognizers are constructed 

equivalently. We define MAP recognizers operating on a complete chunk      . The segment -
recognizer is defined by                                                                                (4) 

operating on chunks       of the set        . This set contains all chunks of length l assigned to 
Qi. The probability Pl(Qi) is defined of the occurrence probability of the segment Qi 
represented by chunks of length l.  If the output of the recognizer (4) is not Qi the recognizer 
makes an error. The segment error rate of the recognizer using first order trajectory model  is 
defined by                                                                    (5) 

In chapter 4 expression (5) is evaluated by the relation                                                 

2.2 Shannon’s Conditional Entropy 

A recognizer can be seen as a decoder of information sent via a noisy channel. In our case the 
decoder receives chunks and decodes the chunks to the index i of a segment Qi. Shannon's 

conditional entropy           [7] determines the number of bits missing to decode the chunks 

without errors.           is defined by                                                                    (6) 
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The application of Shannon's entropy to chunks is described in [6]. Given Shannon's entropy, 
the lower and upper bounds of the segment error rates are given by the Fano [12] and the 
Golić [13] bound. In chapter 4 plots with these bounds are presented. 

2.3 The Monte Carlo Method 

We use the Monte Carlo Method [9] to evaluate the segment  error rates (5) and  Shannon's 
entropy (6). The error rates and the entropies are defined as an integral            , where 
Z denotes a random variable with distribution p(Z) and f(Z) is an operator on Z. Usually this 
integral cannot be evaluated analytically due to the high dimension of Z, which is in our case 
in the order of 50-100. The Monte Carlo Method uses the relation                                                   (7) 

Thus the expression 
             approximates the integral. The approximation error decreases 

with increasing n [4]. In our experiments n is chosen by observing the convergence with 
increasing n.  

3 Simulation of Feature Vectors  

Our simulations are restricted to segments realized by 2 feature vectors i.e. by chunks of 

length l=2 denoted as             . We choose for Zn a mono-modal Gaussian distribution, 

which is defined in section 3.1. In section 3.2 an efficient method to generate the chunks is 
presented leading also to an explicit expressions for the TEPs used in (2) and (3). 

3.1 Distribution of the Chunks 

We assume that the chunks emitted by the segments Qi have a mono-modal multivariate 
Gaussian distribution 

 p(Z|Qi) = N(Z; ȝi, V) ; i=1,...,NQ               (8) 

We first define the covariance Vx of a single feature vector X of dimension D. We assume that 
Vx is the same for all segments and that the vector components within each feature vector X 
are statistically independent leading to a diagonal covariance matrix VX                                           (9) 

The variances б2 (normalized to 1) are the same for each component (globally pooled 
variance). This approach is inspired from the use of the LDA [5]. The statistic dependency of 
adjacent feature vectors Xn-1, Xn is specified by the correlation matrix                                          (10) 

The correlation coefficients ρd (d=1,...D) are defined by                                              

This structure of the correlation matrix assumes that adjacent feature vectors components              are statistic independent except for the components which have the same position 
d within the vector (d=d’). Using the specifications (9), (10) the structure of V is given by:                                                 (11) 

To model the means ȝi of the emission probabilities N(Z;ȝi,V) we investigate several cases.  
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In a first study the means were set to achieve different error rates. In the following the means 
of the Gaussians are notated as                                                            (12) 

3.2 Generation of Chunks 

To generate the chunks we assume we have a generator of statistic independent Gaussian 
vectors. Using the results of [8,chapter 45] we can generate efficiently chunks with the 
distribution (8). In the following we sketch shortly these results: 

The inverse covariance matrix of V is defined as                                                               (13) 

Given (13) we generate samples yn and yn-1                      , which have to be 
statistic independent and are distributed by the mono-modal Gaussians                                                               .           (14) 

The samples            can be generated using a standard Gaussian sample generator. 

Given the matrix                   we generate samples              emitted by a 

segment Qi with the distribution (8) using the relation:            ;                                                                             (15) 

Thus the samples Zn can be generated very efficiently by using by for all segments the same 
samples of yn and yn-1. Given the relation                                              
the relations (14) and (15) leads to expressions of the TEPs used in (2) and (3):                                                                                (16)                                                             (17)                                                                    
(16) shows that the conditional distribution leads to a shift of the means and to a new 
covariance matrix. 

4 Results 

In the following we will present segment error rates and Shannon's entropy for different 
settings of the parameters defining the distribution (8). We compare the FO-segment 
recognizer (4) with the related SO-recognizer based on the 2 trajectory models (2) and (3) 
realized by the TEPs (16), (17). Thus we get segment error rates FO-SER and SO-SER. The 

entropy H(Z|Q) (6) is evaluated by averaging the term               using the Monte Carlo 

Method (7). The trajectory model           is given by the SO and FO TEPs (16) and (17). To 
simulate the feature vectors we use (15) by generating samples Xn for each segment Qi. In 
order to investigate the impact of the correlation we vary the means    , the correlation 
coefficients ρd and the number NQ of the segments as defined in section 3.1. The series of 
experiments are guided by the strategy to change the parameters from artificial ones with easy 
to understand distributions to those related to the HMM recognizer and the speech database 
described in section 4.1. 
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4.1 The Speech Database and the Derived Parameters 

For our investigation we use a set of SpeechDat-Car [9] like speech databases containing 
about 1800h of read speech uttered by 810 speakers. The databases were labeled 
automatically into NQ=607 segments by forced Viterbi alignment using a state of the art tri-
phone HMM recognizer designed with NQ= 607 segments.  

The features of the HMM recognizer are analysed at a frame rate of 15ms. Thus the duration 
of a chunk of the length l is l*15ms. To improve the recognition performance in noisy 
environments, noise reduction techniques have been applied [13].  From noise reduced 
spectra, MFCCs and their ‘dynamics’ are derived and extended to super vectors, which are 
transformed by an LDA [5] to the final feature vector with the dimension D=24. 

 Given the segmented speech database, chunks of length l=2 were extracted and the sets                         were constructed. From these sets the 'database adapted' 
parameters of the distribution (8) were determined (see section 4.3). For each set the means    were determined. The correlation coefficients ρd are determined by averaging over all 
segments.  

4.2 A 2 Class Experiment 

The first experiment is done with an easy to understand distribution (8) and were the number 
of segments NQ is restricted by 2. Further we use following segment probabilities, means and 
correlation coefficients.: 

- p denotes the probability P2(Q1) of the segments Q1 (P2(Q2)=1-p ) (see (4)) 
- ρ0 denotes the correlation parameter:               (see (10)) 

- the means are defined as follows:                                                            

To define the means we use the notation (12) and use the unity vector ID defined by ID 
=(1,...,1)T,  which has D components. The means of the segments were chosen in such a way 
that the 2 distributions p(Z|Qi), i=1,2 are symmetric around 0. The value of    determines the 
overlap of the two distributions and thus the segment error rates (SER). The number n of 
simulated features was set to 50 000 samples. Higher number of n did not change the results 
significantly. Initial an experiments with p=0.5 was performed leading to no change in error 
rates between the SO and the FO case. This is caused by the symmetric structure of the 
distributions, where the decision boundaries are the same for the SO and the FO case. Thus 
further experiments are made with p=0.3 (H(Q)=0.9).Table 1 shows the results for different 
values of    and the same value of the means. 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

SO 0.084 0.30   SO 0.192 0.51 

 

SO 0.155 0.51 

FO 0.084 0.30 

 

FO 0.193 0.55 

 

FO 0.161 0.61 

                                                                                   

                              Table 1 - parameter for the mean           
For the case       the feature vectors are statistic independent leading to the same results 
for FO and SO case. With increasing correlation parameter    the error rate increases. This is 
consistent with the increase of Shannon’s entropy in both cases as the information contained 
in the chunk decreases. In the SO case the error rate is less than in the FO case. But this effect 
is very small. Bigger differences can be seen in Shannon’s entropy. 
In fig. 1 scatter plots of SER - H(Q|Z) are shown. The different points are gained by 
simulations with varying the parameter   . The error rate and Shannon’s entropy drops with 
increasing ȝ0. Fig.1 shows the case ρ0=0.5 and ρ0=0.95. With increasing    the SER increases 
as less information is in the feature vectors. Also the SER and the related Shannon’s entropy 
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show higher values for the FO-case as in the SO-values showing the impact of the correlation. 
The differences in error rates are small compared to differences in Shannon’s entropy as 
already shown in table 1. The case         demonstrates that the points H(Q|Z)-SER tend 
to leave the upper Fano bound for the FO case. 

            
Figure 1a and 1b- left figure 1a: ρ0=0.5 ; right figure 1b: ρ0=0.95 

4.3 Experiments with Database Adapted Parameters 

In the following we describe 3 experiments adapting step by step the parameters to those 
derived from the speech database as described in section 4.1. For all experiments the number 
of segments is set to NQ=606, where we omitted the silence class. The probabilities of the 
segments Pl(Qi) needed for the recognizer (4) were set to the values as found in the speech 
database. This probabilities lead to an entropy of H(Q)=8.3. 

4.3.1 Experiment I 

The means                               are generated by a random number generator for the random 

values µ r,i with the distribution                . Depending on      different error rates were 

achieved.  The correlation coefficients are set as described in section 4.2. 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

SO 0.31 1.72            SO 0.55 4.98 

 

SO 0.62 4.01 

FO 0.31 1.72 

 

FO 0.56 5.73 

 

FO 0.64 5.16 

                                                                              

Table 2-          

              
Figure 2 - simulations with ρ0=0.5 and ρ0=0.95 and varying     

36



In table 2 we fix     and vary the correlation coefficients as in table 1. The results are similar 

as described in section 4.2. 

4.3.2 Experiment II 

The means                of the chunks measured in the speech database were used for the 

simulation. The correlation coefficients are as set in section 4.2. As shown in table 3 the 

results are similar to those in table 2. This concludes that a Gaussian model for the means 

approximates good the behavior of the recognizer. 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

SO 0.43 2.10 

 

SO 0.57 3.06 

 

SO 0.66 3.80 

FO 0.43 2.10 

 

FO 0.58 3.30 

 

FO 0.68 4.69 

                                                                                    

Table 3 - simulation with means given by the database 

4.3.3 Experiment III 

In a final experiment we adapt the correlation coefficients    as defined in (10) to the values 
found in the speech database.    has the greatest value of 0.87, whereas     has the smallest 
value of 0.29. To see the impact of correlation we modified these coefficients by the formula                     

For      we have no correlation, for      we have the correlation as in the database. In 
table 4 we see results for different values of   . 

 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

 

  SER H(Q|Z) 

SO 0.43 2.10 

 

SO 0.54 2.86 

 

SO 0.62 3.51 

FO 0.43 2.10 

 

FO 0.55 3.02 

 

FO 0.64 4.09 

                                                                                 

Table 4 - simulation with modified correlation coefficients 

Table shows, that differences in error rates observed for the FO and SO case are small. This is 
a similar result as found in table 3. The case        comes closest to the distribution of the 
features found in the database. For a multi modal acoustical models as presented in [6] the 
error rate is  0.49, which shows that more accurate FO-models achieve better results than 
simple SO-models. 

5 Conclusion 

Based on the simulations we conclude that the modeling of correlation of adjacent feature 
vectors does not improve the recognition rate of segments substantially, when using mono-
modal distributions. We assume, that the decision surfaces do not change significantly leading 
to this finding. It is still an open question, if this finding holds also for multimodal 
distributions. Shannon's entropy shows significant differences. As this entropy is related to 
scores used for rejection, the use of models modeling correlation may lead to better rejection 
strategies. 
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