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Abstract: An iterative algorithm for indexing codevectors that are taken from

spherical shells of the Gosset lattice E8 is described. The proposed approach has a

significantly lower computational complexity than the traditional Schalkwijk index-

ing method. Both methods are described in detail and an analysis of the encoding

and decoding complexity is presented. The new indexing method is implemented

in the “Gosset Low Complexity Vector Quantizer” (GLCVQ) which is used for

super-wideband transform audio coding in Amd. 6 to ITU-T Rec. G.729.1.

1 Introduction

In gain-shape vector quantization [1], each input vector x ∈R
n is decomposed into a gain factor

g ≥ 0 and a shape vector c ∈ R
n which are then quantized independently by means of a scalar

and a vector quantizer, respectively. Typically, the Euclidean norm is used and the gain factor g

and the shape vector c are computed as

g = |x| = ||x||2 and c = g−1x.

Hence, all normalized vectors c are located on the surface of the n-dimensional unit sphere and,

consequently, the codevectors of the vector quantizer should cover that surface as uniformly as

possible. Such a vector quantizer is referred to as a spherical vector quantizer (SVQ). Several

approaches have been described and analyzed in the literature, e.g., [2, 3, 4].

A novel and highly efficient realization of a spherical vector quantizer (SVQ) is the “Gosset

Low Complexity Vector Quantizer” (GLCVQ) which is used for transform audio coding in

Amd. 6 to ITU-T Rec. G.729.1 [5, 6]. The GLCVQ codebook is composed of vectors that are

located on spherical shells of the Gosset lattice E8. The proposed GLCVQ encoding procedure

is conducted in two steps. First, in the quantization step, the codevector with the minimum

distance to the (normalized) input vector c must be determined. Then, in the index assignment

step, the determined codevector must be transformed into a binary index ivq which is transmitted

to the decoder. Typically, the well-known Schalkwijk algorithm [7]1 is employed for lattice point

indexing. In this paper, a novel index assignment algorithm is presented which can be realized

with significantly lower complexity.

The paper is structured as follows. In Section 2, a general introduction for Gosset lattice based

SVQ is given. The quantization step of the GLCVQ algorithm is summarized in Section 3 while

the novel fast indexing method is detailed in Section 4. After a complexity and performance

evaluation of the GLCVQ algorithm (Section 5), the paper is concluded.

1Originally, this algorithm has already been proposed in [8], see also [9].
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Table 1 - Exemplary numbers of codevectors, equivalence classes and equiv. root classes for E8 lattice.

Bit rate log2(N)/n Codevectors N Equiv. classes P (cf. [2]) Equiv. root classes Q

0.988 240 8 2

1.762 17520 42 5

2.257 272160 162 11

2 SVQ Based on the Gosset Lattice

The Gosset lattice is defined in eight dimensions, as the superposition of the checkerboard

lattice D8 and a shifted version thereof,

E8
.
= D8 ∪ (D8 +v) ,v =

[

1
2

. . . 1
2

]T
. (1)

The checkerboard lattice is defined for arbitrary dimensions n as

Dn
.
= {x =

[

x0 . . . xn−1

]T
∈ Z

n : (
n−1

∑
i=0

xi)mod 2 ≡ 0}. (2)

Lattice vectors with a constant distance to the origin define a shell of a lattice. The spherical

vector codebook of the SVQ to be investigated in the following is composed of all N vectors

which fulfill the Gosset lattice condition (1) and at the same time are located on a shell with

a specific radius, normalized to have unit absolute value. Targeting a nearest-neighbor quan-

tization with low complexity and memory, due to the invariance of (1) against permutation of

the vector coordinates, the N codevectors populating the SVQ codebook can be represented by

permutation codes as shown in [2].

Each of the permutation codes is defined by one out of P classleader vectors x̃p ∈ R
n which is

composed of L ≤ n different real valued amplitudes µl distributed over the n vector coordinates

in decreasing order µ0 > µ1 > · · · > µL−1, i.e.,

x̃p =
[

x̃p,0 x̃p,1 . . . x̃p,n−1

]T

=
[ ←w0→

µ0 µ0

←w1→

µ1 µ1 . . .
←wL−1→

µL−1 µL−1

]T

. (3)

Each of the real values µl can occur wl times within the vector. A permutation of the vector

x̃p is defined as another vector x̃ that is composed of the same real values µl but in a different

order. An equivalence class is defined as the set of codevectors which can be produced by

arbitrary permutations of a single classleader vector. Finally, the SVQ codebook is defined as

the aggregation of the codevectors of the equivalence classes related to all P classleader vectors,

normalized to have unit absolute value.

Due to the permutation code representation of the codebook, an efficient nearest-neighbor quan-

tization routine can be employed as proposed in [10] where only the classleader vectors must be

evaluated rather than all vectors in the codebook. Examples of the number of spherical codevec-

tors and corresponding classleader vectors for codebook designs at different effective bit rates

per vector coordinate are listed in Tab. 1.

3 Gosset Low Complexity VQ — Quantization Step

The computational complexity of the SVQ approach as described in the previous section is still

quite high, in particular at higher bit rates, because a relatively large number of classleader
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Table 2 - Example type A+B classleader root vectors and the corresp. sets of classleader vectors for E8.

Classleader root vector (x̃q) Associated classleader vectors (x̃p)

[

1 0 0 0 0 0 0 0
]T

(Type A)
[

1 0 0 0 0 0 0 0
]T

,
[

0 0 0 0 0 0 0 −1
]T

[

3
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

]T [

3
4

1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

]T
,
[

3
4

1
2

1
2

1
2

1
2

− 1
2

− 1
2

− 1
2

]T

[

3
4

1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

]T
,
[

3
4

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

]T

Type B (odd parity)
[

1
2

1
2

1
2

1
2

1
2

1
2

1
2

− 3
4

]T
,
[

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

− 3
4

]T

[

1
2

1
2

1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 3
4

]T
,
[

1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 1
2

− 3
4

]T

vectors must be evaluated in order to find the optimal codevector for a given input vector x. To

reduce the complexity, the GLCVQ approach defines Q < P classleader root vectors x̃q so that

only Q instead of P vectors must be accounted for in the quantization routine. Some examples

for typical relations of P and Q are listed in Tab. 1.

Usually, the Gosset lattice is defined for eight dimensions. Due to its construction rule which

is based on the general Dn lattice, formally, the proposed GLCVQ concept can be generalized

to arbitrary dimensions. High quantization performance, however, can only be achieved for

dimensions which are multiples of eight [11].

3.1 Definition of Classleader Root Vectors

A classleader root vector x̃q is defined in analogy to (3) but contains only positive real valued

amplitudes µl ≥ 0. Given a classleader root vector, sets of classleader vectors can be constructed

by combining the classleader root vector coordinates with a specific distribution of positive and

negative signs. However, in order to fulfill the lattice constraint (1), a specific sign parity condi-

tion must be considered for two classes of classleader root vectors, described in the following.

In analogy to Sec. 2, all codevectors which can be produced based on a specific classleader root

vector form an equivalence root class.

Type A classleader root vectors are the basis to produce codevectors which fulfill the constraint

as defined in the first part of (1) (the definition of the Dn lattice). In particular, any valid

vector xA =
[

xA,0 · · · xA,n−1

]

T which fulfills the lattice constraint (1) can be transformed

into another valid vector xA
′ by inverting the sign of one (arbitrary) vector coordinate iA0

as

(
n−1

∑
i=0

x′A,i)mod 2 =

(

(
n−1

∑
i=0

xA,i)−2 · xA,iA0

)

mod 2 ≡ 0 (4)

whereby xA,iA0
∈ Z. Valid codevectors are hence produced from type A classleader root vec-

tors by setting arbitrary combinations of positive and negative signs at all vector coordinates,

followed by a permutation of the vector coordinates and normalization.

Type B classleader root vectors are the basis to produce codevectors which fulfill the constraint

as defined in the second part of (1) (the definition of the shifted Dn lattice). Here, a vector

xB
′, produced by inverting the sign of one arbitrary vector coordinate iB0

of a valid vector

xB =
[

xB,0 · · · xB,n−1

]

, would not comply with the definition of (3) anymore. Instead, the

sign inversion of two different vector coordinates iB0
and iB1

is guaranteed to result in another

207



valid vector xB
′′ because

(
n−1

∑
i=0

x′′B,i)mod 2=

(

(
n−1

∑
i=0

xB,i)−2xB,iB0
−2xB,iB1

)

mod 2

= (0−1−1)mod 2 ≡ 0. (5)

As a conclusion, valid codevectors are produced from type B classleader root vectors by setting

such combinations of positive and negative signs that fulfill a particular sign parity constraint,

followed by a coordinate permutation and normalization. The sign parity constraint can either

be even or odd according to the definition

parity(x) =

(

n−1

∑
i=0

1− sign(xi)

2

)

mod 2 =

{

1 odd

0 even
(6)

where sign(xi) = 1 if xi ≥ 0 and −1 otherwise. Tab. 2 demonstrates how groups of classleader

vectors x̃p can be expressed by means of a type A classleader root vector as well as a Type B

classleader root vector with odd sign parity constraint.

3.2 Nearest-Neighbor Quantization

The nearest-neighbor quantization routine of the GLCVQ approach takes advantage of the rep-

resentation of all valid codevectors by means of type A and B classleader root vectors, cf. [12].

The algorithm is briefly summarized here.

Given a normalized input vector c∈R
n, first the magnitude vector cmag

.
= Pc ·

[

|c0| · · · |cn−1|
]

T

is constructed, where Pc is the permutation matrix to obtain a sorted vector with decreasing

magnitudes. Since Type B classleader root vectors might require an additional sign inversion,

an auxiliary vector sq is defined as

sq =























[

1 · · · 1

]T

−2 · e jq if x̃q is of Type B and

parity(c) 6= parity(x̃q)
[

1 · · · 1

]T

else

(7)

with the jq-th unit vector e jq . To minimize the impact of sign inversion, jq must be chosen as

the last non-zero vector coordinate of x̃q. Then, the optimum classleader root vector is found

by computing

qopt = arg max
q∈{0,...,Q−1}

cT
mag · (x̃q ◦ sq) (8)

with the component-wise multiplication operator ◦. Finally, the quantized vector c̃ ∈ R
n is

given in its unnormalized form as x̃ = PT
c ·

(

x̃qopt ◦ sqopt ◦ csig

)

with the (permuted) sign vector

csig = Pc ·
[

sign(c0) · · · sign(cn−1)
]

T.

4 Gosset Low Complexity VQ — Index Assignment Step

Let x̃ be the optimal codevector determined in the nearest-neighbor quantization that is a per-

muted version of a classleader vector x̃p according to the definition from (3). The index p as

well as the permutation of the coordinates shall be transformed into a unique codevector index

iGLCVQ.
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Figure 1 - Index range I ′ and de-

composition into subranges.
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Figure 2 - Construction of index range I from three ver-

sions of the index range I ′ for i
(0)
off = 0 (following (13)).

The transformation of a permutation of a classleader vector into a unique index is traditionally

achieved by the well-known Schalkwijk indexing method [7]. In the following, novel indexing

method that is significantly more efficient for the GLCVQ codebook will be described. An ex-

act description of the respective encoding and decoding process is given in Amd. 6 to [5]. Here,

due to the lack of space, only the underlying principles shall be illustrated based on a concrete

example for n = 5.

Let the selected classleader vector x̃p ∈ R
5 be composed of wl distinct amplitudes µl with

w =
[

1 2 2
]

T and µ0 > µ1 > µ2. The corresponding overall number of possible permutations

of coordinates can be computed via the multinomial coefficient (for L = 3):

Nx̃ =
(∑L−1

l=0 wl)!

∏L−1
l=0 wl!

= 30. (9)

Furthermore, let an exemplary optimal codevector be

x̃
.
=
[

µ2 µ1 µ0 µ1 µ2

]T
. (10)

Since x̃ is a permuted version of the classleader vector, the amplitudes are in general unsorted.

An index iP to represent the permutation of the vector coordinates of the optimal codevector

shall be computed in the following. The codevector index must be in the range 0 ≤ iP < Nx̃

which shall be considered as the codevector index range I . In the proposed approach to trans-

form the permutation into an index, the codevector index range shall be successively subdivided

into subranges to finally yield iP.

Prerequisites: The computation of the index iP will be carried out in iterations. Prior to the

start of the actual computation, an index offset is introduced which is set to i(0)
off = 0 for the

first iteration. In later iterations, this offset will be set according to previous iterations of the

algorithm. Moreover, the first iteration starts with the vector x̃(0) = x̃. Its weights wl and ampli-

tudes µl are reordered such that the weights are in decreasing order, i.e., for the present example:

w̄(0) .
=
[

w1 w2 w0

]T
=
[

2 2 1
]T

and µ̄(0) .
=
[

µ1 µ2 µ0

]T
.

Iteration: To begin with the indexing, the multi-amplitude vector x̃(0) is transformed into an

intermediate vector

x̃′
.
=
[

∗ µ1 ∗ µ1 ∗
]T

(11)

which is only composed of the first amplitude value in µ̄(0) (here: µ1) and of a wildcard ∗ which

represents all amplitudes except µ1. It is important to note that the first entry of µ̄(0) is chosen
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since it represents the most frequent amplitude value. The weights of the transformed vector

are w′
1 = w̄(0)

0 = w1 = 2 and w′
∗ = w̄(0)

1 + w̄(0)
2 = 3. Now the number of different permutations

of the vector x̃′ is given by the binomial coefficient

Nx̃′ =

(

w′
1 +w′

∗

w′
∗

)

=

(

5

3

)

.
= C3

5 = 10. (12)

A temporary index iP,loc is then introduced to represent the permutation of coordinates µ1 and ∗
within the vector x̃′ (11). Correspondingly, another index range I ′ is defined as 0 ≤ iP,loc < Nx̃′

as shown in Fig. 1. I ′ can be subdivided into three subranges that correspond to three possible

vector start sequences (up to the first wildcard):

• Subrange I ′
0: Sequence

[

∗ · · ·
]T

(C2
4 = 6 vectors).

• Subrange I ′
1: Sequence

[

µ1 ∗ · · ·
]T

(C2
3 = 3 vectors).

• Subrange I ′
2: Sequence

[

µ1 µ1 ∗ · · ·
]T

(1 vector).

In all three cases, · · · is used as a placeholder for all permutations of µ1 and ∗ distributed over

the remaining vector coordinates. The corresponding number of permutations is given for each

subrange in parentheses, e.g., the placeholder · · · represents six possible permutations of µ1 and

∗ in the last four vector coordinates of x̃′ for I ′
0. In the present example, by comparison to the

original vector (11), the index subrange I ′
0 is identified to match the vector x̃′.

In the next step, I ′
0 must be further subdivided into subranges by considering the four remaining

coordinates
[

µ1 ∗ µ1 ∗
]T

of x̃′ in analogy to the decomposition of I ′ as

• Subrange I ′
0,0:

[

∗ · · ·
]T

(C1
3 = 3 vectors).

• Subrange I ′
0,1:

[

µ1 ∗ · · ·
]T

(C1
2 = 2 vectors).

• Subrange I ′
0,2:

[

µ1 µ1 ∗ · · ·
]T

(C1
1 = 1 vector).

Again, the number of allowed permutations of amplitudes of the placeholder · · · is given in

parentheses. In the example, the subrange I ′
0,1 matches the last four vector coordinates of x̃′,

and the placeholder · · · represents the last two coordinates of x̃′, i.e.,
[

µ1 ∗
]T

. In the last step,

the subrange I ′
0,1 is further subdivided into two subranges, each populated by one index to

finally yield the temporary index iP,loc = 4 in the example in Fig. 1.

So far, the index iP,loc was found with respect to vector x̃′ in (11) in which the wildcard ∗
represents either µ0 or µ2. When actually filling in the wildcard ∗ in (11), C2

3 = 3 different

permutations of µ0 and µ2 are allowed. Therefore, the index range I for the vector x̃ is mapped

to a combination of C2
3 = 3 versions of the index range I ′ for the vector x̃′ as shown in Fig. 2.

Also, the index offset i(0)
off must be considered in this mapping which, however, is zero in the

first iteration. Due to the ambiguity in the mapping of the index iP,loc = 4 from index range

I ′ to index range I , iP,loc = 4 is mapped to the sequence {12,13,14} of candidate indices

in Fig. 2. As a consequence, the iteration procedure described before is repeated involving a

modified vector x̃(1) =
[

µ2 µ0 µ2

]

T as well as a modified weight vector w̄(1) and a modified

amplitude vector µ̄(1) which are derived from the respective versions of the previous iteration

by removing all coordinates with amplitude µ1. In this next iteration, a new index offset

i
(1)
off = i

(0)
off +C2

3 · iP,loc = 12 (13)
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Figure 3 - (a): SNR performance of 8-dim. GLCVQ compared with lattice VQ of ITU-T Rec. G.729.1

[5, 6] and 3GPP AMR-WB+ (b): Comparison of computational complexity measured in 1000 weighted

operations per quantized vector (encoder and decoder).

must be considered to contribute for the index range determined in the first iteration. By repeat-

ing the described iteration procedure, one distinct amplitude value µl after the other is removed

from the vector x̃ to finally yield the index iP = 13.

Since the GLCVQ codebook is populated by permutations of P classleader vectors, in the final

step, an index offset must be added to iP to account for the classleader vector index p:

iGLCVQ = iP +offset(p). (14)

In order to retain a high coding efficiency, the index offsets for all classleader vectors are stored

in lookup tables.

5 Evaluation

The quantization performance and computational complexity of GLCVQ has been compared

with the lattice-based SVQ which is used for transform coding in the TDAC module of ITU-T

Rec. G.729.1, see Fig. 3. The GLCVQ achieves a slightly better signal-to-quantization-noise-

ratio than the reference VQ module which is in fact close to the theoretical optimum for the

considered vector dimensions of n = 8 and n = 16 [11]. However, a considerable reduction in

computational complexity (a factor of 2 – 3.5 depending on the bit rate, cf. Fig. 3(b)) is achieved

which is due to the efficient representation of the code in terms of classleader root vectors and

the particularly efficient indexing procedure for the lattice points. On the other hand, since the

resulting codebooks do not represent embedded codes, a little flexibility is sacrificed concerning

the available bit rates.

6 Conclusions

We have reviewed the GLCVQ algorithm for spherical vector quantization with codebooks that

are based on shells of the Gosset lattice. While maintaining excellent quantization performance,

a considerable reduction of the computational complexity could be achieved by grouping the

P equivalence classes of the original algorithm [2] into Q < P equivalence root classes. For
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example, at a rate of approximately 2.257 bit per vector coordinate, only a fraction of Q/P ≈
6.8% of the candidate vectors have to be evaluated compared to [2].

Particularly, an iterative indexing method for the codevectors has been devised which, when usd

in GLCVQ, is significantly less complex than the traditional Schalkwijk indexing. The main

algorithmic advantage is that vector coordinates with identical amplitudes are jointly processed

within a single algorithmic step, beginning with the most frequently occurring value.

The GLCVQ has been successfully applied for super-wideband speech and audio coding in

the candidate codec described in [13]. Recently, it has been included in Amd. 6 to ITU-T

Rec. G.729.1.
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