
EVALUATION OF SINGLE- AND DUAL-CHANNEL NOISE POWER

SPECTRAL DENSITY ESTIMATION ALGORITHMS FOR MOBILE PHONES

Christian Herglotz, Marco Jeub, Christoph Nelke, Christophe Beaugeant⋆, and Peter Vary

Institute of Communication Systems and Data Processing ( )

RWTH Aachen University, Germany
⋆Intel Mobile Communications, Sophia-Antipolis, France

{herglotz,jeub,nelke,vary}@ind.rwth-aachen.de

christophe.beaugeant@intel.com

Abstract: Noise suppression has become a standard option for high end mobile

phones. One essential component for most of these algorithms is the estimation of

the noise power spectral density (PSD) of the unwanted background noise. A large

number of single and dual-channel approaches that exploit a large variety of differ-

ent signal properties have been presented in literature. So far, a comprehensive eval-

uation of these approaches in realistic and reproducible situations does not exist. In

this contribution, the performance of well-known as well as recently proposed noise

PSD estimators is analyzed with respect to an integration in dual-microphone mo-

bile phones. Additionally, a new algorithm is proposed which exploits explicitly the

dual-microphone configuration of state-of-the-art mobile phones and smartphones.

1 Introduction

In recent years background noise reduction in mobile communication devices has been subject

to extensive research. As manufacturing costs drop and technology develops, nowadays it is

more and more common to integrate more than one microphone in the mobile device. As

a consequence, new algorithms are developed which benefit from the additional information

captured by a second microphone.

A key part of many existing noise reduction algorithms is the noise estimation. The objective

is to find an accurate and reliable estimate of the current PSD of the background noise. Com-

mon single-channel algorithms often reach their limits in difficult situations like non-stationary

noise or low input signal-to-noise-ratios (SNR). The use of multiple microphones provides the

possibility to exploit further properties of the input signals, e.g., the coherence or the direction-

of-arrival of the multichannel input signal. Thus, typical single-channel drawbacks can be over-

come.

Recent developments concentrate on the use of two microphones. In this dual-channel ap-

proach, two alignments are of special interest, cf. Figure 1: The first possibility is to place one

microphone at the bottom as in classic mobile phones and a second microphone placed on the

top backside of the mobile which will be referred to as bottom-top (BT) in the remainder of the

paper. In the second considered alignment, two closely-spaced microphones are located at the

bottom of the mobile which will be referred to as bottom-bottom (BB). When single-channel

algorithms are presented in this contribution, only the signal of microphone B1 is taken into

account. Only the so-called handset mode of mobile phones is taken into account where the

loudspeaker of the mobile device is pressed on the ear and the bottom microphones are held
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close to the mouth of the speaker. Similar performance evaluations of dual-channel noise PSD
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Figure 1 - Considered microphone alignments for dual-microphone mobile phones. The left plot shows

the bottom-top (BT) alignment and the right plot the bottom-bottom (BB) alignment.

estimation algorithms have been published in [14] and for single-channel algorithms recently in

[15]. However, in this contribution we give a more elaborate evaluation and extend the exper-

iments to recently proposed dual-channel methods.Real recordings with mock-up phones were

conducted to analyse the noise estimation algorithms in realistic conditions.

2 Noise Reduction Framework

A block diagram of the considered noise reduction system for dual-microphone mobile phones

is depicted in Figure 2. Since state-of-the-art mobile communication is constrained to single-

channel transmission, only a single-channel output has to be computed from the dual-channel

input signals. We assume the input signal xi(m) to be the sum of the desired speech si(m) and

the noise ni(m), where m is the sample and i the microphone index (xi(m) = si(m)+ ni(m)).
The signals are segmented, windowed and then transformed to the frequency domain. We

obtain the signals Xi(λ ,µ) in the frequency domain, where λ is the frame and µ the frequency
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Figure 2 - Block diagram of the dual-channel noise reduction system where the different noise PSD

estimators are employed.
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Table 1 - Main simulation parameters.

Parameter Settings

Sampling frequency fs = 16kHz

Frame length L = 320 (20ms)

FFT length M = 512 (including zero-padding)

Frame overlap 50% (Hann window)

bin index. Φ̂nn(λ ,µ) is the estimated noise PSD and G(λ ,µ) contains the output spectral

weighting gains. X̂(λ ,µ) and x̂(m) are the enhanced output signals in the frequency and time

domain, respectively. The used simulation parameters are given in Table 1.

In this paper we focus on the noise estimation module. Thus, only the output of the noise

PSD Estimation Φ̂nn(λ ,µ) will be examined. Furthermore, a delay compensation of the useful

speech between the microphones is presumed to have already been performed.

3 Measurement Setup

The background noise analysis is based on measurements inside an acoustic chamber using the

standardized procedure described in [4] to generate realistic, i.e., diffuse noise fields. Here,

we restrict the analysis to two commonly used noise types: car and babble noise from [4].

Exemplary, the average periodograms of babble noise for the three microphones are depicted in

Figure 3(a). The recording system consists of a HEAD acoustics HMS II.3 artificial head which

includes a mouth simulator. Two mock-up phones were build by integrating two omnidirectional

Beyerdynamic MM1 measurement microphones in a 6x12x3cm3 plastic housing.
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(b) Speech generated by the the artificial mouth of the

dummy head

Figure 3 - Average periodograms of the recorded input in the bottom left, bottom right and top mi-

crophone. The averaged signals were taken from measurements. Differences can be explained by the

distance and the mounting direction of the specific microphones.

The phones were mounted on the artificial head in the flat handset position. This procedure

allows to record speech and noise separately which is usually not possible in real acoustic

environments. As speech input, the set of English sentences spoken by a woman and a man

from the speech database presented in [8] was used. The average periodograms are depicted

in Figure 3(b). The attenuation of the speech signal in the top microphone with respect to the

bottom microphones is found to be nearly constant, usually higher than 10dB. We chose a signal

length of 16.6s. As input SNR we chose four different values: −5dB, 5dB, 15dB and 25dB.
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As the signals are recorded in a realistic environment, the coherence of the speech is lower than

one. The effective, average magnitude squared coherence (MSC) of the measured speech is

depicted in Figure 4. It can be seen that in both alignments, no perfect coherence of the desired
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Figure 4 - Magnitude squared coherence of speech signals recorded in an acoustic chamber for both

investigated alignments. The BT alignment shows considerable notches.

speech signal (a coherence close to one) is achieved. Especially in BT one can find some

significant notches which are caused by shadowing effects, microphone mismatch and due to

the different orientation of the microphones.

The MSC of the considered background noise is shown in Figure 5 where differences to the the-

oretical diffuse noise field models can be observed. However, the curves are always below the

speech MSC and the overall shape of the curves corresponds to the diffuse coherence models.
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(a) Bottom-Top Alignment

0 2000 4000 6000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

M
a
g
n
it
u
d
e
 S

q
u
a
re

d
 C

o
h
e
re

n
c
e

Bottom−Bottom−Alignment (3cm)

Measurement

Ideal diffuse

(b) Bottom-Bottom Alignment

Figure 5 - Magnitude squared coherence of measured noise signals in BT (a) and BB (b) alignment.

High coherence in low and low coherence in high frequencies can be explained by the diffusity of the

noise field.
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4 Noise PSD Estimation Algorithms

Since we restrict the algorithms to a possible application in mobile phones, only a limited

number of single- and dual-channel algorithms have been selected that show most promising

effectiveness. Due to the limitation of space, the twelve analyzed algorithms are only briefly

described in this section. For further details, the reader is referred to the corresponding publi-

cations. The required tuning parameters are selected as proposed in the publications.

1. The ideal noise estimate (Perf) takes the pure, unaltered noise input and is used as a

reference. To obtain ”fair” results it is recursively smoothed over time using a constant

smoothing factor (α = 0.9). This also explains the error which is unequal to zero in the

evaluation part.

2. The First-T-Frames (FTF) algorithm is a single-channel algorithm and uses the first T

frames (here: T = 20 frames) of the input signal assuming no speech activity as well as

stationary noise. During these first frames, the noise PSD is calculated using recursive

smoothing (α = 0.9). The resulting noise PSD is kept and used throughout the entire

length of the input signal.

3. The Minimum Statistics (MS) algorithm is a single-channel method explained in [13].

The algorithm tracks the noise PSDs by searching the minima in every frequency bin of

the recent input frames from a given time span (which is usually set to 1.5s−2s). The

noise PSD is smoothed over time using adaptive smoothing parameters. Furthermore, a

bias compensation and a maximum noise-slope is applied which only allows slow noise

changes to be tracked.

4. The MMSE-Tracker is an algorithm proposed by Hendriks et al. [6]. It is developed

for single-channel applications and is based on a statistical approach to determine an

expected value of the noise PSD. It estimates the expected noise under the condition of the

input signal X and an estimated a-priori-SNR. As probability density function (PDF) for

speech and noise, a Gaussian distribution in the frequency domain is assumed for both.

The a-priori-SNR is estimated using the spectral smoothing proposed by Ephraim and

Malah in the Decision Directed Approach [2]. Furthermore a bias correction is performed.

The MMSE-Tracker requires an estimation of the speech-PSD using an algorithm that

calculates spectral gains for speech enhancement. Here, the approach presented in [3] is

used.

5. The coherence-based algorithm (Coh) by Dörbecker [1] estimates the background noise

by exploiting the coherence between the signals arriving at both microphones. If the

arriving signal is coherent it is considered as speech. If it is not coherent it is considered

as noise. The averaged power level of the incoherent part of both signals is used to

estimate the noise PSD. This method is applicable for both microphone alignments.

6. The enhanced coherence-based algorithm (ECoh) [7] is a generalized dual-channel noise

PSD estimator which exploits a-priori-knowledge about the noise field coherence. The

approach (Coh) [1] can be seen as a special case for an uncorrelated background noise

assumption. Here, an ideal diffuse noise field as depicted in Figure 5 is assumed.

7. The binaural approach by Kamkar-Parsi (KKP) et al. [9] exploits a similar approach as

the ECoh. The authors also assume that the coherence function of the background noise

is known. However, as a preprocessing step, a simple coherence based Wiener Filter as
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presented in [16] is applied on the input signal to extract the coherent parts of the signal.

This algorithm is applicable for both alignments.

8. The Channel 2 approach (Ch2) assumes that in the top microphone of the BT-alignment

the speech signal arrives with much lower sound pressure level than in the bottom micro-

phone. Assuming that the noise power is equal at both microphones (which holds, e.g.,

in diffuse noise fields), the smoothed signal from the top microphone is directly used as a

noise estimate.

9. The ninth algorithm is the Dual Microphone Spectral Subtraction approach (DMSS) by

Gustaffson et al. in [5]. It is applicable for the BT-alignment and derives the estimated

noise PSD in two steps: At first a rough speech estimate is calculated by spectrally sub-

tracting the noise estimate of the last frame from the current input frame of the bottom

microphone. Afterwards, this speech estimate is subtracted from the current input frame

of the top microphone. Thus, only the noise part of the top microphone should remain.

10. The phase-based approach (Phase) by Kim et al. is a dual-channel approach for the BB

allignment presented in [12]. It evaluates the phase difference of the input signal and

derives a speech presence probability. If the probability is below a given threshold the

input is assumed to be noise. It is used to update the estimated noise PSD. Otherwise the

noise PSD of the last frame is kept.

11. The weighted noise estimator (WNE) is a single-channel approach taken from Kawamura

et al. [11], originally taken from Kato et al. [10]. It uses the estimated noise PSD of the

last frame to estimate a current SNR. If the SNR is negative the input is assumed to be

pure noise and used as a noise estimate. If the SNR is very high the estimate of the

last frame is kept. In between these extremes a weighted update of the noise estimate is

performed.

12. The new algorithm (Proposed) is explicitly designed for the BT microphone alignment. It

exploits the difference of the power levels in both channels in order to distinguish between

speech and noise and generates a noise estimate using this information. Investigations

showed that results are comparable to the MMSE-Tracker by Hendriks. At the same time

this new approach shows a much lower computational complexity.

To get a rough insight into the computational complexity of the algorithms, the computing times

in the used MATLAB simulations can be considered. Figure 6 depicts the normalized compu-

tation times, where Minimum Statistics has been used as a reference. As a first impression one
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Figure 6 - Normalized processing times of the investigated algorithms in Matlab-Environment.
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can see that the investigated dual-channel approaches usually show much less complexity than

the single-channel-based methods.

5 Evaluation

The objective measure used to determine the accuracy of a given noise estimate is the so-called

logarithmic error (LogErr) as used in [6, 7]. It is defined as a distance measure between the

estimated noise power Φ̂nn and the ideal noise power Φnn. As a consequence, the LogErr can

only be calculated when the ideal pure noise is known, which is the case in our simulations.

The corresponding equation is given by

LogErr[dB] =
1

ΛM

Λ

∑
λ=1

M

∑
µ=1

∣

∣

∣

∣

10 · log10

(

Φnn(λ ,µ)

Φ̂nn(λ ,µ)

)
∣

∣

∣

∣

. (1)

A more detailed analysis is obtained when investigating the LogErr over time and frequency

separately. As an example, Figure 7(a) and 7(b) show the LogErr of the MS and the Coh

algorithm. The error is calculated using a noisy speech signal at 0dB SNR (babble noise) in the

BT-alignment. In the time-domain plot one can see that the estimate of Coh shows less variation.
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Figure 7 - Logarithmic errors over time and frequency. (a) depicts the estimation error for Minimum

Statistics [13] and (b) for the coherence based approach [1].

MS shows deficiencies especially when the background noise changes which results in peaks
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in the time plot. On the other hand, in the frequency domain evaluation, one can see that MS

shows a rather constant performance over all frequencies. In contrast, the performance of Coh

diminishes strongly below 300Hz. This is caused by the high coherence of low frequency noise

in a diffuse field. As a consequence we decided to evaluate the performance of the algorithms

in two separate frequency bands: 0..1kHz and 1..8kHz.

6 Results

The results of the simulations are depicted in Figure 8. As a first impression we can see that

the MMSE-Tracker by Hendriks and the proposed approach return the best results. In terms of

single-channel performance, the results are in accordance with the evaluation paper by Taghia

et al. [15], where, e.g., the MMSE-Tracker was found to be superior to the Minimum Statistics

approach. One can also see that many algorithms show their best performance in medium SNR-

cases. In high SNRs the results are often unsatisfying because the dominant speech prevents an

accurate estimate. The high LogErr of the Coh-algorithm in low frequencies is caused by the

high coherence of the background noise in this frequency region. The high value of the FTF

can be explained by the short period of pure noise before speech starts. As a consequence the

first speech parts are part of the noise estimate.

7 Conclusions

We have developed a framework that allows to evaluate and compare different noise PSD esti-

mation algorithms which are applicable for noise reduction in dual-microphone mobile phones.

When only one microphone is available, the single-channel MMSE noise tracker by Hendriks

should be employed. With respect to noise reduction, the performance gain due to a secondary

microphone can only be fully exploited in the bottom-top configuration which should be the

design target for any future mobile communication device. The proposed dual-channel algo-

rithm outperforms all related algorithms in terms of estimation accuracy and computational

complexity, which was confirmed by experiments.
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Figure 8 - Results of investigated noise PSD estimation algorithms in terms of the logarithmic error

(LogErr). The left diagrams show the results for car noise and the right diagrams for babble noise. The

top diagrams depict the performance above and the bottom diagrams the performance below 1kHz.
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