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Abstract: Generation process model of fundamental frequency contours known as 
Fujisaki's model is ideal to represent global features of prosody.  It is a command 
response model, where the commands have clear relations with linguistic and 
para/non linguistic information included in the utterance.  Therefore, by controlling 
fundamental frequency contours in the framework of the generation process model, a 
more flexible control of prosodic features comes possible in speech synthesis.  Also, 
the model can be used to solve the problems of HMM-based speech synthesis, which 
arise from frame-by-frame treatment of fundamental frequencies.  In this paper, two 
methods for improved control of prosodic features in HMM-based speech synthesis, 
and one method for flexible fundamental frequency control to realize prosodic 
focuses in synthetic speech, are presented.  All these methods are based on the 
generation process model.  

1 Introduction 

Recently, in the speech synthesis community, a special attention has been placed on HMM-
based speech synthesis, where a flexible control in speech styles is possible by adapting phone 
HMMs to a new style.  In the method, both segmental and prosodic features of speech are 
processed together in a frame-by-frame manner, and, therefore, it has an advantage that 
synchronization of both features is kept automatically [1].  Although utterances conveying 
various attitudes and emotions are possible with rather high quality by the method, frame-by-
frame processing of prosodic features, however, includes an inherit problem.  It has a merit 
that fundamental frequency (F0) of each frame can be used directly as the training data, but, in 
turn, it sometimes causes sudden F0 undulations (not observable in human speech) especially 
when the training data are limited.  Prosodic features cover a wider time span than segmental 
features, and should be treated differently.  

One possible solution to this issue is to use the generation process model (F0 model) 
developed by Fujisaki and his co-workers [2, 3].  The model represents a sentence F0 contour 
as a superposition of accent components on phrase ones; each type of components assumed to 
be responses to step-wise accent commands and impulse-like phrase commands, respectively.  
These components are known to have clear correspondences with linguistic and para/non 
linguistic information, which is conveyed by prosody.  Thus, using this model, a better control 
can be realized for F0 contour generation than the frame-by-frame control.  Because of clear 
relationship between generated F0 contours and linguistic and para/non linguistic information 
of input texts, manipulation of generated F0 contours is possible, leading a flexible control of 
prosodic features.   

However, in order to fully extract the benefit of the F0 model in speech synthesis, two major 
problems should be solved.  One is to analyze and to extract the F0 model commands from 
observed F0 contours of utterances in the training corpus.  This process needs to be done at 
least semi-automatically to avoid a time consuming process of manual extraction [4].  Since 
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the content of utterances is known for the training corpus, it can be used to facilitate the 
command extraction.  We have developed several methods for automatic extraction of F0 
model commands, which apply constraints on phrase and accent commands [5, 6].  The 
current paper, however, focuses on the other problem: how to incorporate the F0 model in 
HMM-based speech synthesis.   We have developed a corpus-based method of synthesizing 
F0 contours in the framework of F0 model and have combined with HMM-based speech 
synthesis to realize speech synthesis in reading and dialogue styles with various emotions [7].  
However, the F0 contours generated by HMM-based speech synthesis are simply substituted 
by those generated by the method before the speech synthesis.  Although, a better quality is 
obtained for synthetic speech by the method, the segmental and prosodic features do not 
satisfy the maximum likelihood condition in the HMM framework anymore; losing a benefit 
of simultaneous control of the segmental and prosodic features of HMM-based speech 
synthesis.   

In order to solve this situation, two methods have been developed; to reshape the F0 contour 
generated by the HMM-based speech synthesis using the F0 model, and to avoid degradation 
of synthetic speech due to erroneous voiced and unvoiced decision of the training corpus.  
The former reshape the F0 contours taking the probabilistic factor of HMM-based speech 
synthesis into account [8].  This may reduce the mismatch between segmental and prosodic 
features as compared to separately generating both features, though the maximum likelihood 
condition is not satisfied.  The latter satisfies the condition, because it only modifies the 
training corpus [9].   

By handling F0 contours in the F0 model framework, a “flexible” control of prosodic features 
comes possible.  It is rather easy to analyze the prosodic controls obtained by statistical 
methods and to modify generated F0 contours in another corpus-based way, which is trained 
using a small speech corpus.    As an example for the flexible control, we have developed a 
method of focus control [10].  Given a speech synthesis system without specific focus control, 
it is not efficient to prepare a large speech corpus with focus control and train the speech 
synthesis system from the beginning.   The method predicts the differences in F0 model 
commands between utterances with and without focuses, and modifies the F0 model 
commands of the synthetic speech without focus.   

2 Modeling F0 Contours  

The movement of F0 is well represented by the generation process model (henceforth F0 
model) [3].  As shown in Fig. 1, it is a command-response model that describes F0 contours in 
logarithmic scale as the superposition of phrase and accent components.  The ith phrase 
component Gpi (t) is generated by a second-order, critically-damped linear filter in response to 
an impulse-like phrase command, while the jth accent component Gaj (t) is generated by 
another second-order, critically-damped linear filter in response to a stepwise accent 
command:  
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Based on the analysis of Japanese utterances, time constants αi and βj are known to be almost 
fixed to 3.0 s-1 and 20.0 s-1, respectively.  The parameter γthresholds accent components can 
also be set to a fixed value around 0.9.  An F0 contour is then given by the following 
equation: 
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where, Fb is the bias level, I is the number of phrase components, J is number of accent 
components, Api is the magnitude of the ith phrase command, Aaj is the amplitude of the jth 
accent command, T0i is the time of the ith phrase command, T1j is the onset time of the jth 
accent command, and T2j is the reset time of the jth accent command.   

 

 

Figure 1 – F0 model 

The model has been shown to be applicable for many languages.  In the case of Mandarin, 
each syllable can have up to four tone types with different F0 contours, and F0's often take 
values below the phrase components.  To represent this F0 movement, tone components are 
introduced instead of accent components: tone components have negative values 
corresponding to negative commands [11]. 

3 Improving Prosodic Control in HMM-based Speech Synthesis 

In HMM-based speech synthesis, an F0 sequence is modeled by multi-space probability 
distribution (MSD) HMMs [1].  It combines discrete HMMs (for voiced/unvoiced signs) and 
continuous HMMs (for F0's and their Δ and Δ2 values).  F0 contours are generated from these 
HMMs under the maximum likelihood criterion.  In order to avoid over-smoothed F0 contours, 
global variances (GVs) of the F0 sequences are modeled by a single Gaussian distribution and 
taken into account.   

3.1 Reshaping F0 contours 

In spite of the inclusion of deliberative values of F0 in HMM parameters and consideration of 
global variances, there are still cases of over-smoothed F0 contours and F0 undulations not 
corresponding to the linguistic information of input texts.  In order to solve this situation, a 
method was developed to generate F0 contours using the F0 model and to use them for speech 
synthesis.  The method first decides initial positions of F0 model commands from the 
linguistic information and estimates their magnitudes/amplitudes from the F0 contours 
generated by the HMM-based speech synthesis.  The estimation is done by taking derivatives 
of F0 sequences smoothed by piece-wise third order polynomials [4].   Then the F0 model 
parameter values are optimized recursively so as to minimize the following value;  
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where p is the F0 sequence generated by the F0 model and cp̂ is that of generated by HMM-

based speech synthesis.  U is the diagonal matrix of variances, which are determined by the 
HMMs.  The method is similar to the method to find out optimum F0 model parameters for an 
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observed F0 contour [4], but different in that it takes variances of F0 contours generated by the 
HMM-based speech synthesis.   

To evaluate the method, speech synthesis was conducted for two Japanese native speakers' 
utterances (one male and one female) included in ATR continuous speech corpus.  Out of 503 
sentence utterances for each speaker, 450 utterances were used for the HMM training.  Two 
versions of speech were generated for the rest of 53 sentences; one by the original HMM-
based speech synthesis and the other by the proposed method.  Their qualities were compared 
through RAB test by 12 native speakers of Japanese.  For R sounds, natural utterances were 
used.  A 5-point scoring was employed; 2 (proposed method is much better) and -2 (original 
HMM-based speech synthesis is much better).  As shown in Fig. 2, significant improvements 
are observed for the proposed method in 8 sentences (male speaker) and 9 sentences (female 
speaker), though the difference between two methods are not clear for the rest of sentences.  
The total mean scores are 0.252 with a 95 % confidence interval [0.168, 0.335] and 0.230 
with a 95 % confidential interval [0.148, 0.311] for male and female speakers, respectively.  
Clear improvements by the proposed method are observable especially when the original 
HMM-based speech synthesis generates erroneous F0 contours; F0 contours with local 
undulations not corresponding to the linguistic information of input texts.   

 

Figure 2 – Result of subjective comparison of synthetic speech quality (RAB test).  

3.2 Coping with voiced and unvoiced decision errors 

In HMM-based speech synthesis system, the Voiced/Unvoiced (VU) decision of each state is 
independently made based on the multi-space distribution of F0 parameters of that state. The 
multi-space distribution of F0 parameters of one state is estimated by traversing the decision 
tree by the contextual features till a leaf node. Due to pitch tracking errors or badly 
pronounced vowels, a leaf for a state belonging to a vowel may contain more unvoiced 
occurrences than voiced occurrences. Thus, if that leaf is chosen, the corresponding state is 
decided as unvoiced.  Then the voice quality is degraded not only by the pitch tracking errors, 
but also by the VU decision errors in HMM training. 

87



Due to larger dynamic F0 ranges, the above problem becomes a serious issue for tonal 
languages such as Chinese. When automatic F0 extraction is conducted (using ESPS RAPT 
algorithm) for the Mandarin speech corpus with 300 sentences by a female speaker, almost 
22.37% syllables of the total include the VU decision errors; among these errors, 33% failures 
are occurred in T4, 39% in T3, 11% in T0, 12% in T2 and 5% in T1. After training process of 
MSD-HMM, the errors will increase due to hard VU decision of states. 

This consideration lead us to an idea of generating continuous F0 contours (for utterances in 
training corpus) assuming F0's in unvoiced regions.  F0 model interpolation is used for the 
purpose. (F0 model commands are extracted by FujiPara Editor [12].) When generating F0 
contours, VU decision is done according to the phoneme segmental information; we defined 
Mandarin phonemes with either voiced or unvoiced as shown in Table 1.   

Table 1 – Mandarin initial and tonal final units (in pinyin) with voiced or unvoiced decision. 

Unvoiced Initials   b, c, ch, d, f, g, h, j, k, p, q, s, sh, t, x, z, zh 
Voiced Initials    l, m, n, r, u, y 

Voiced Tonal 
 Finals 

  a, ai, an, ang, ao, e, ei, en, eng, er, i, ia,  ian, iang, iao, ie, ii, iii, 
in, ing, iong, o, ong, ou, u, ua, uai, uan, uang, uei, uen, uo, v, van, 
ve, vn 

To evaluate the performance of our method as compared to the MSD-HMM, the above 300 
sentences of Mandarin speech corpus are divided into 270 sentences for HMM training and 30 
sentences for testing.  The labels of unvoiced initials attached to the corpus are used as the 
boundaries of VU switch. The input text to the system includes symbols on pronunciation and 
prosodic boundaries, which can be obtained from orthogonal text using a natural language 
processing system, developed at University of Science and Technology of China.  

  

Figure 3 - F0 contours predicted by MSD and our method, along with corresponding original F0 contour of 
natural utterance.   

  
Figure 4 - F0 contours predicted by MSD and our method, along with corresponding original F0 contour of 
natural utterance.   

Figures 3 and 4 show examples of F0 contours generated by MSD-HMM and by our approach, 
overlaid onto those of the corresponding original (natural) utterances. The sentences shown in 
Figs. 3 and 4 consist of 4 and 5 Mandarin syllables, respectively: “she4+shi1+luo4+hou4.” 
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and “zhe3+ti2+chu1+le0+yi4.”  Here, the syllables “zhe3” in Tone 3 and “hou4” in Tone 4 
are difficult to be synthesized correctly because of large dynamic ranges of their F0 contours 
and occasional creaky phonation.  The syllable “le0” in neutral tone is also hard to be 
synthesized correctly; reduced power and highly contextually-dependent F0 contour make 
accurate pitch tracking difficult.  As shown in the figures, the MSD-HMM-based synthesizer 
has VU decision errors in “shi1,” “luo4,” “zhe3,” and “le0” syllables with inaccurate F0 
contours.  On the contrary, our method can generate F0 contours closer to original utterances 
with less VU decision errors. 

Table 2 compares the root mean squared errors (RMSEs) of F0 and phone duration predictions 
for MSD-HMM and our method. The RMSE of F0 is calculated in voiced regions using the 
forced-aligned state durations. The RMSE of phone durations is calculated between the 
forced-aligned phone durations and the synthesized phone durations in both voiced and 
unvoiced regions except the silences. The RMSEs of F0's and phone durations shown in the 
table are those averaged over all the test samples. When continuous F0 contours are used in 
the HMM training (our method), the VU decision errors are significantly reduced.  This 
situation contributes to the better prediction of phone durations by our method.  Advantage of 
our method over MSD-HMM is clear from the reduced RMSE in F0 prediction.   

Table 2 – RMSEs of F0's and phone durations predicted by MSD-HMM and by HMM trained using continuous 
F0 contours (our method).  

 RMSE of F0 RMSE of phone duration 
MSD-HMM 52.8 Hz 28 ms 

Continuous F0 29.7 Hz 24 ms 

4 Realizing focuses in speech synthesis   

Although emphasis of word(s) is not handled explicitly in most current speech synthesis 
systems, its control comes important in many situations, such as when the systems are used 
for generating reply speech in spoken dialogue systems: words conveying key information to 
the user's question need to be emphasized.  Emphasis associated with narrow focus in speech 
can be achieved by contrasting the F0's of the word(s) to be focused from those of neighboring 
words. 

This contrast can be achieved by placing a phrase command (or increasing phrase command 
magnitude, when a command already exists) at the beginning of the word(s), by increasing the 
accent command amplitudes of the word(s), and by decreasing the accent command 
amplitudes of the neighboring words.  The way of using these three controls may be different 
from language to language.  

Although it is possible to realize prosodic focuses in speech synthesis by preparing a speech 
corpus with focus control and training the speech system from the beginning, it is time 
consuming.  Given an HMM-based speech synthesis system without focus control, an 
efficient way to realize prosodic focus is to adapt HMMs to speech samples with focuses.  
However, an efficient and better adaptation is possible in the F0 model frame-work.   

As mentioned briefly in section 1, a corpus-based method of predicting F0 model commands 
from input text was already developed [7].  In the method, a binary decision tree (BDT) is 
trained for each model parameter and used for the prediction. Training was done for ATR 
continuous speech corpus and speech synthesis system was constructed by combining with 
HMM-based speech synthesis.  Since the corpus did not include apparent focus control, the 
resulting system was without focus control.   

To realize prosodic focus, a method was proposed to modify the command 
magnitudes/amplitudes predicted by the above baseline system.  In the method, first, training 
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of BDT's is conducted for differences in phrase command magnitudes and accent command 
amplitudes between utterances with and without focuses.  Then, the command values 
(magnitudes/amplitudes) predicted by the baseline system (for utterances without specific 
focuses) are modified using the differences.  The modification is first applied to the phrase 
command magnitudes and then to the accent command amplitudes taking the (modified) 
phrase command information into account.  (In the current experiment, training is conducted 
using phrase command information observable in the corpus for the baseline system, while 
prediction is done using modified phrase commands.  It is possible to use the modified phrase 
component also for the training, which is more consistent.)  Table 3 shows input parameters 
for the binary decision trees for predicting phrase command magnitude differences.  By 
concentrating to the differences, a better training for F0 change due to focal position comes 
possible only with a limited speech corpus.  Moreover, speakers for the training need not be 
the same for those of the baseline.  (HMM-based speech synthesis requires the target speech 
for adaptation.) 

Table 3 - Input parameters for the prediction of differences in phrase command magnitudes.  Category numbers 
of “number of morae” and “accent type” for preceding bunsetsu are larger by one than those of current bunsetsu 
to indicate “no preceding bunsetsu.”  Here, bunsetsu is defined as a basic unit of Japanese syntax and 
pronunciation consisting of content word(s) followed or not followed by particles.  Boundary depth code (BDC) 
indicates the distance from the bunsetsu immediately before the boundary to the bunsetsu directly modified. 

Input parameter Category 
Position of current bunsetsu in prosodic phrase 3 
Position of current bunsetsu in prosodic clause 4 
Position of current bunsetsu in sentence 5 
Distance of current bunsetsu from bunsetsu with focus (in number of bunsetsu's)  5 
Number of morae of current bunsetsu 4 
Number of morae of preceding bunsetsu 5 
Accent type (location of accent nucleus) of current bunsetsu 4 
Accent type (location of accent nucleus) of preceding bunsetsu 5 
BDC at the boundary immediately before current bunsetsu 9 
Pause immediately before current bunsetsu 2 (yes or no) 
Length of pause immediately before current bunsetsu Continuous 
Phrase command for the preceding bunsetsu 2 (yes or no) 

Number of morae between preceding phrase command and head of current bunsetsu 4 

Magnitude of current phrase command Continuous 
Magnitude of preceding phrase command Continuous 

We selected 50 sentences from the 503 sentences of the ATR continuous speech corpus, and 
asked a female speaker (different from the speaker for the baseline system) to utter each 
sentence without (specific) focus and with focus on one of assigned words (bunsetsu's).  For 
each sentence, 2 to 4 bunsetsu's were assigned depending on the sentence length.   As the 
result, 50 utterances without focus and 172 utterances with focus on one of noun phrases 
(bunsetsu including a noun) are obtained. These utterances are used to train BDT's for 
command magnitude/amplitude prediction. There are cases where phrase command 
magnitudes take minus values after modification.  Since minus magnitudes are not allowed in 
the F0 model, they are set to zero for the current experiment. 

Figure 5 shows examples of generated F0 contours when the predicted changes are applied to 
F0 model parameters predicted by the baseline system.  Although the baseline system includes 
prediction of pauses and phone durations, no modification is applied to those values.  This is 
because changes in pauses and phone durations due to focuses are not significant in the case 
of Japanese.  The three controls, viz., increasing phrase command magnitudes, increasing 
accent command amplitudes for focused words, and decreasing accent command amplitudes 
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of neighboring words, can be seen in the figure.  Here we should note that the speaker to train 
the command differences is different from one (the narrator) for training the baseline method. 

In order to check the effect of the focus control for realizing emphasis, a perceptual 
experiment was conducted for the synthetic speech.  Twenty six sentences not included in the 
50 sentences for training command magnitude/amplitude differences are selected from the 
503 sentences of the ATR continuous speech corpus, and one synthetic utterance is selected 
for each sentence; 19 utterances with focus and 7 utterances without focus.  Eleven native 
speakers of Japanese were asked to listen to these utterances and check bunsetsu where they 
perceived an emphasis.  “No emphasis” answer was allowed.  On average, in 76.1 % cases, 
the bunsetsu's focused by the proposed method were perceived as “with emphasis.”  If “no 
emphasis” answers are excluded from the statistics, the rate increases to 83.7 %.   

Modification of F0 contours may cause degradation in synthetic speech quality.  In order to 
check this point, the same 11 speakers were also asked to evaluate the synthetic speech from 
naturalness in prosody in 5-point scoring (5: very natural, 1: very unnatural).   No apparent 
degradation is observed from the result; 3.03 (standard deviation 1.00) for utterances with 
focus and 3.12 (standard deviation 0.93) for those without.   
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Figure 5 - Generated F0 contours and F0 model parameters for Japanese sentence “arayuru geNjitsuo subete 
jibuNnohooe nejimagetanoda ((He) twisted all the reality to his side.).”   From the top to the bottom panels: 
without specific focus, focus on “subete,” and focus on “jibuNnohooe,” respectively. 
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Since focus is represented as changes in the F0 model command magnitudes/amplitudes, 
emphasis levels can be controlled easily by interpolating/extrapolating the changes [13].   
Experiments were conducted by selecting 64 sentences (from the 503 sentences of the ATR 
continuous speech corpus) not included in the 50 sentences for training command 
magnitude/amplitude differences.  Their predicted differences in command 
magnitudes/amplitudes were multiplied by the scale factor r before applied to the command 
magnitudes/amplitudes predicted by the baseline method.  For each sentence, one scale factor 
r was selected from 8 levels ranging from 0 (baseline) to 1.7 as shown in Table 4, so that the 
same sentence did not appear in a series of perceptual experiment.  Speech synthesis was 
conducted for each generated F0 contours, and totally 64 speech samples were prepared.  
(Eight speech samples for each scale factor.)  Four native speakers of Japanese were asked to 
evaluate the naturalness and to judge emphasis levels for the synthetic speech.  The 
evaluation/judgment was done again in 5-point scoring.  As for the emphasis levels, score 5 is 
for strong emphasis and score 1 is for no emphasis.  Scores for naturalness is the same with 
the former experiment.  As shown in Table 4, emphasis levels can be changed by the 
interpolation/extrapolation without serious degradation in naturalness.  The emphasis level is 
perceived as 2.68 in the case r = 0 (no focus).  This may be due to the default focus; the 
phrase initial word/bunsetsu is usually perceived as focused.   

The proposed method assumes no change in the prosodic structures for utterances with and 
without focuses; prosodic words are the same for the both cases.   Although, in Japanese, it is 
true for most cases, focuses can be realized also by raising F0 only for particles of the 
bunsetsu's to be focused, for instance.  The situation will be more complicated when we try to 
realize attitudes and emotions as the differences in the F0 model command level; changes in 
prosodic structures should be taken into account.  The situation will be different for languages.  
Since, in Japanese, each word/bunsetsu has its own “accent type,” F0 rise/fall timings respect 
to the syllable boundaries should not change depending on the focuses.  However, this may 
not be true for other languages, where each word needs not necessarily have a specific F0 
rise/fall pattern. 

Table 4 - Result of perceptual experiment for synthetic speech with various interpolation/extrapolation levels on 
the command magnitudes/amplitudes. 

r Naturalness Emphasis 
1.70 2.91 4.13 
1.50 3.22 3.97 
1.30 3.50 3.89 
1.00 3.71 4.06 
0.75 3.19 3.75 
0.50 3.50 3.50 
0.25 3.44 3.47 

0 (without focus) 3.18 2.68 

5 Conclusion 

Two methods for improving prosody control in HMM-based speech synthesis and one method 
of adding flexibility in speech synthesis are developed.  All the methods are based on the F0 

model, which provides us clear relations between F0 contours and linguistic and para/non 
linguistic information conveyed by spoken language.  The experimental results (listening tests 
of synthetic speech) show advantages of the developed methods over the baseline (original) 
HMM-based speech synthesis.  Further researches are necessary for; to incorporate F0 model 
constraints directly in HMM-based speech synthesis, and to realize flexible F0 control other 
than for prosodic focuses.   
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