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Abstract: The statistical properties of segments [8] using a specific acoustic model

called the hidden chunk model (HCM) is investigated. We call the sequence of

feature vectors assigned to a segment a chunk of length `. The HCM still assumes

that the feature vectors are statistically independent. In contrast to hidden Markov

model (HMM) we introduce emission probabilities which depend on `. Segment

error rates (SERs) are calculated on a database with over 33 million chunks aligned

to 607 segments. The HCM achieves more than 10 % absolute improvement in SER

compared to the HMM. Based on the estimated Shannon’s entropy, the proposed

HCM model paves the way to create acoustic models which are heading towards

the lowest possible SER.

1 Introduction

Based on the pattern recognition theory [1], the minimum error rate is achieved by the principle

of maximum likelihood

Ŵ ∗ = argmax
W ∗

P(W ∗|xT ) = argmax
W ∗

p(xT |W ∗)P(W ∗)

p(xT )
,

where W ∗ denotes a sequence of words which is the symbolic representation of an utterance and

xT = {x(1), · · · , x(t), · · · , x(T )} denotes a sequence of feature vectors which is the acoustic

representation of an utterance. Advances in speech recognition depend to a great extent on the

improvements in: the quality of the feature vectors x, language modeling P(W ∗), and acoustic

modeling p(xT |W ∗). This paper is focused on an acoustic model defined by the hidden chunk

model (HCM)

pHCM(xT |QN) =
N

∏
n=1

b`(n−1),`(n)p(x
`(n)|Q(n)),

where the chunk x`(n) = {x(1,n), · · · , x(`,n)} consists of a sequence of feature vectors with a

random length ` aligned to a segment Q(n) as illustrated in Figure 1. Q(n) takes a value from

the set of NQ segments Q = {Qi}
NQ

i=1 containing all possible segment outcomes. Consequently,

QN = {Q(1), · · · , Q(n), · · · , Q(N)} denotes a sequence of segments with N << T . The term

b j,k denotes the chunk length transition probability and `(n) assigns the chunk length `= 1 . . .L

at time instant n. The term p(x`(n)|Q(n)) or simply p(x`|Qi) denotes the chunk emission prob-

ability as highlighted in [8].

The segment Qi denotes the symbolic representation of a sound. In HMM technology, a seg-

ment is a state and a phoneme is defined by a triphone. This implies that a segment is the

symbolic representation of the sounds produced at the beginning, middle, or end of a phoneme.

Furthermore, an utterance W ∗ is defined in the symbolic domain by a sequence of segments QN

and in the acoustic domain by a sequence of chunks {x`(1), · · · , x`(n), · · · , x`(N)} constituting

the sequence of feature vectors.
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Figure 1 - Alignment of the feature vectors to the segments Q1, · · · ,Q5 for three utterances of the same

word W .

Assuming the feature vectors composing a chunk are statistically independent, we get the fol-

lowing approximation for the chunk probability:

p(x`|Qi)≈
`

∏
v=1

p(x(v, `)|Qi). (1)

The extended emission probability p(x(v, `)|Qi) depends on the length ` and on the position

v = 1 . . . ` of the feature vector within a chunk. We denote the probability as the HCM-adapted

emission probability (HCM-EP) modeled with a Gaussian mixture as done for continuous Gaus-

sian HMMs. The relation between the chunk and the feature vector is thus defined as

x` = {x(v, `)}`v=1,

where the time index n has been dropped for notational simplicity.

The performance of the proposed model is determined by the segment error rates SER` and

SERv,` which are evaluated for segments represented by chunks for each length ` and for feature

vectors represented by the position and length (v, `), respectively. Both error rates are defined

as

SER` =
∫

X`

[
1−max

Qi

(
p(x`|Qi) P̀ (Qi)

) ]
dx`, (2)

SERv,` =
∫

X(v,`)
[ 1−max

Qi

(
p(x(v, `)|Qi) P̀ (Qi)

)
] dx(v, `), (3)

where X` denotes the set of all chunks of length ` and X(v, `) denotes the set of all feature

vectors having the position v in a chunk of length `. P̀ (Qi) denotes the probability of occurrence

of segment Qi on the set X` and maxQi
p(·|Qi)P̀ (Qi) is the maximum a posteriori (MAP)

estimator. An analysis utilizing the Shannon’s conditional entropies [11], i.e., H(Q|X`) and

H(Q|X(v, `)), is also given which is closely related to the SER` and SERv,`, respectively.

The remainder of this paper is organized as follows. The statistical framework to evaluate

the proposed chunk model is described in Section 2. It merely concerns the way the entropy

values are estimated. Section 3 presents the experimental framework and results followed by

the Conclusion in the last section.
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2 The Statistical Framework

2.1 Expectations of Functions

In the following we assume that the chunk X` = x` and feature vector X(v, `) = x represent

ergodic random variables [9]. Given a function F(·) which operates on both variables, we can

define the corresponding expectation operator E[·]. Based on the ergodic property of the feature

vectors, the expectations of functions F(x`) and F(x) can be derived as

E[F(x`)] , lim
N→∞

1

N

N

∑
n=1

F(x`(n)); x`(n) ∈ X`,

E[F(x)] , lim
T→∞

1

T

T

∑
t=1

F(x(t)); x(t) ∈ X(v, `).

The above method needs infinitely large sets, in this paper however, we are using a restricted

size of the sets formulated as

E[F(x`)] =
1

|X`|

|X`|

∑
n=1

F(x`(n)); x`(n) ∈ X`, (4)

E[F(x)] =
1

|X(v, `)|

|X(v,`)|

∑
t=1

F(x(t)); x(t) ∈ X(v, `), (5)

where | · | denotes the cardinality of the set. This method is called the stochastic sampling or the

Monte Carlo method.

2.2 Entropies

To evaluate the Shannon’s conditional entropies H(Q|X`) and H(Q|X(v, `)), the relations

H(Q|X`) = H`(Q)− I(X`;Q), (6)

H(Q|X(v, `)) = Hv,`(Q)− I(X(v, `);Q), (7)

are used [9], where

I(X`;Q) = H(X`)−H(X`|Q), (8)

I(X(v, `);Q) = H(X(v, `))−H(X(v, `)|Q). (9)

The terms I(X`;Q) and I(X(v, `);Q) are called the mutual information (MI) between the seg-

ments and the assigned chunks or the position dependent feature vectors, respectively. The

value of MI determines the information extracted from the chunks X` and from the feature vec-

tors X(v, `) for recognizing the segments Qi. The segment entropy H`(Q) denotes, how much

information is needed to decode the segments Qi. Thus, Shannon’s entropies reveal how much

information - measured in [bit] - is missing to recognize the segments without errors.

The segment entropies H`(Q) and Hv,`(Q) in (6) and (7), respectively, are identical since the

probability of occurrence of segment Qi is exactly the same on the sets X` and X(v, `), i.e.,

P̀ (Qi) = Pv,`(Qi). They are calculated as

H`(Q) =−
NQ

∑
i=1

P̀ (Qi) ld P̀ (Qi). (10)
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The statistical dependency between adjacent segments is not modeled. The entropies in (8) and

(9) used to determine the mutual information are defined as follows:

H(X`) , −
∫

X`
p(x`) ld p(x`) dx`,

H(X`|Q) , −
NQ

∑
i=1

∫

X`|Qi

p(x`,Qi) ld p(x`|Qi) dx`

= −
NQ

∑
i=1

P̀ (Qi)
∫

X`|Qi

p(x`|Qi) ld p(x`|Qi) dx`, (11)

H(X(v, `)) , −
∫

X(v,`)
p(x(v, `)) ld p(x(v, `)) dx(v, `),

p(x(v, `)) ,

NQ

∑
i=1

P̀ (Qi)
∫

X(v,`)|Qi

p(x(v, `)|Qi) dx(v, `),

H(X(v, `)|Q) , −
NQ

∑
i=1

∫

X(v,`)|Qi

p(x(v, `),Qi) ld p(x(v, `)|Qi) dx(v, `)

= −
NQ

∑
i=1

P̀ (Qi)
∫

X(v,`)|Qi

p(x(v, `)|Qi) ld p(x(v, `)|Qi) dx(v, `),

where the sets X`|Qi and X(v, `)|Qi denote the sets of chunks X` and feature vectors X(v, `),
respectively, assigned to a particular segment Qi. The chunk probability approximation using

the HCM-EP as in (1) can be used to evaluate (11). The HCM-EPs are modeled by multimodal

Gaussians using a globally pooled covariance matrix. Using an LDA in the feature analysis a

globally pooled covariance matrix has proven to give good results [4].

2.3 Scores Related to Entropies

As shown in Section 2.2 several entropy terms have to be calculated to finally obtain the mutual

informations in (8) and (9). An estimate to the entropy term is proposed employing a scoring

method. Let’s define a score function θ(·) =− ln p(·) yielding

θ(x`|Qi) , − ln p(x`|Qi), (12)

θ(x(v, `)|Qi) , − ln p(x(v, `)|Qi). (13)

It can be shown easily that the following relations hold:

E[θ(x`|Qi)] = ln2 H(X`|Qi),

E[θ(x(v, `)|Qi)] = ln2 H(X(v, `)|Qi).

Using the stochastic sampling as shown in (4) and (5) we get

H̃(X`|Qi) =
1

ln2 ·
∣∣X`|Qi

∣∣

∣∣X`|Qi

∣∣
∑
n=1

θ(x`(n)|Qi),

H̃(X`|Q) =
NQ

∑
i=1

P̀ (Qi)H̃(X`|Qi),

(14)
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H̃(X(v, `)|Qi) =
1

ln2 ·
∣∣X(v, `)|Qi

∣∣

∣∣X(v,`)|Qi

∣∣
∑
t=1

θ(x(v, `, t)|Qi),

H̃(X(v, `)|Q) =
NQ

∑
i=1

P̀ (Qi)H̃(X(v, `)|Qi).

The terms H̃(X`) and H̃(X(v, `)) can be estimated using the same method employing

θ(x`) =− ln p(x`) and θ(x(v, `)) =− ln p(x(v, `)). (15)

2.4 Bounds of Error Rates

Based on the following relation in [9]:

−
∫

X
p(x) ld p(x)dx ≤−

∫

X
p(x) ld f (x)dx,

which holds for any probability function f (x) constrained to f (x)≥ 0 and
∫
X f (x)dx = 1, yields

H(X`|Qi)≤ H̃(X`|Qi) and H(Q|X`)≤ H̃(Q|X`).

Thus better modeling of the chunk probabilities and of the HCM-EPs leads to better estimates

of the entropies until the lower limit given by the real entropy terms is reached. Certainly,

this also holds for the average values of the scores as shown in Section 2.3. It is well known

in HMM technology that better fitting scores lead to lower error rates. Given the Shannon’s

entropy values, the lower and upper bounds of the error rates are given by the Fano [2] and

Golić [3] bounds, respectively.

3 Experiments and Results

3.1 Experimental Set Up

The feature vectors are derived in a frame rate of 15 ms from in-car recorded speech sampled at

11.025 kHz [7]. To improve the recognition performance in noisy environments, noise reduction

techniques have been applied [10]. From the noise reduced spectra, MFCCs are derived and

extended to super vectors, which are transformed by an LDA [4] to obtain the final feature

vectors. The basic design parameters of the initial HMMs used to classify the segments are

shown in Table 1.

Table 1 - Design parameters of the HMMs.

# Gaussians D Dimension of feature vector NQ Number of segments

20 000 24 607

The same design parameters including the amount of Gaussians used for each segment were

copied to model the HCM-EPs. The HCMs training for a specific chunk ` is done following

the EM-algorithm in [6] taking into account all feature vectors in the set X`. We regard the

chunks of length `= 1,2,3. The chunks with ` > 3, which are rather rare except for non-speech

segments, have been truncated to the first three feature vectors appearing in the sequence and

are added to the chunks with length three. The values of the probabilities P(`) and the total

number of chunks are listed in Table 2.
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(a) Original HMMs with |X`|= 5 089 251.
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(b) HCM-EPs with |X`|= 7 871 342.

Figure 2 - The distribution of scores for HMMs and HCM-EPs for `= 2.

Table 2 - Probabilities P(`) and the total number of chunks.

P(`= 1) P(`= 2) P(`= 3) ∑
3
`=1 |X

`|

0.29 0.46 0.25 33 879 857

The entropies H`(Q) as in (10) are given in Table 3. For equally distributed segments (P̀ (Qi) =
1/NQ) the entropy would take the value of 9.25 bits. According to Table 3, the segments are not

equally distributed and the distributions depend on `.

3.2 Distributions of Scores

In this section we show the distributions of the scores as described in Section 2.3. The distri-

butions are determined first for each segment Qi taking the feature vectors from the sets X` and

X(v, `). In the second step the distribution of all segments is determined by averaging the seg-

ment specific distributions with the weight defined as the probability of each segment P̀ (Qi).
These distributions are the basis to estimate the entropies.

For chunks of length `= 2, Figure 2(a) shows the distributions of the scores based on the initial

HMMs. In Figure 2(b) the scores of HCM-EPs depending on ` are plotted. In both figures

the green scores denoted with θ(x`|Q) correspond to the scores θ(x`|Qi) in (12) averaged over

all segments, whereas the scores θ(x(v, `)|Q) for v = 1,2 correspond to the averaged scores of

θ(x(v, `)|Qi) in (13). The blue scores correspond to θ(x`) and θ(x(v, `)) as defined in (15). The

distributions in Figures 2(a) and 2(b) show that the HCM-EPs have lower scores. Furthermore,

the distributions of the scores for different v are quite similar hinting that the distributions HCM-

EPs for different position v might be quite similar.

Table 3 - Segment entropies H`(Q) [bits] of chunks with length `.

H1(Q) H2(Q) H3(Q)

7.78 bits 8.35 bits 7.37 bits
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3.3 Entropies and Error Rates

In the following, the SERs given in (2) and (3) and the approximation of Shannon’s entropies

using the method of stochastic sampling according to Section 2.3 are presented. Tables 4 and 5

show that the HCM-EP leads to lower error rates compared to the original HMM. Furthermore,

the SERs decrease with increasing length of chunks. The error rates are quite similar for feature

vectors with different positions v within chunks of the same length. How close the approximated

values of the mutual information are to their real values is still an open issue.

Table 4 - Segment error rates and mutual informations derived from feature vectors.

X(v, `) |X(v, `)| SERv,` [%] Ĩ(X(v, `);Q) [bits]
HCM-EP / HMM HCM-EP / HMM

v = 1 `= 1 3 683 738 65.9 / 81.1 3.1 / -0.7

v = 1
`= 2 5 109 251

58.1 / 68.2 4.8 / 3.4

v = 2 58.2 / 68.4 4.8 / 3.3

v = 1

`= 3 3 464 567

41.2 / 51.0 4.7 / 3.8

v = 2 38.2 / 46.0 4.9 / 4.2

v = 3 44.0 / 48.3 4.5 / 4.0

Table 5 - Segment error rates and mutual informations derived from chunks.

X` |X`| SER` [%] Ĩ(X`;Q) [bits]
HCM-EP / HMM HCM-EP / HMM

`= 1 3 683 738 65.9 / 81.1 3.1 / -0.7

`= 2 5 109 251 49.1 / 61.1 4.6 / 2.1

`= 3 3 464 567 31.3 / 41.6 3.9 / 2.7

Figure 3 shows the Fano and Golić bounds together with the SERs related to the approximated

Shannon’s entropy. Especially for `= 3, it seems that the approximation is quite inaccurate due

to the assumption of statistical independence of adjacent feature vectors within a chunk. Note

that the values in y-axis are calculated following (6) and (7) by taking the entropy and mutual

information values in Tables 3, 4, and 5.

4 Conclusions

The use of chunks leads to new acoustical models of segments, where the length of the chunks

assigned to a segment is regarded as an intrinsic property of a segment. This is in contrast

to HMM technology, where the length is treated as a duration effect modeled by repeating a

state (segment) with the same statistical properties. The HMM and the HCM approach assumes

that the feature vectors are statistically independent. The analysis of entropy shows that this

assumption is wrong especially for chunks with `= 3. As the chunks have a fixed and treatable

dimension, chunk probabilities modeling statistical dependencies could be derived [5]. Those

extended HCMs could reach the theoretical lower limit in SER. Still the statistical dependency

between chunks is an open issue for recognition tasks where larger phonetic units than segments

have to be recognized.
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Figure 3 - Relation between SER and Shannon’s Entropy for HCM-EP model.
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