
GRAMMAR-BASED DIALOGUE MANAGEMENT TECHNIQUES

Václav Matoušek, Tomáš Nestorovič

University of West Bohemia in Pilsen, Faculty of Applied Sciences

{matousek | nestorov}@kiv.zcu.cz

Abstract: This article is focused on some of spoken dialogue management

techniques, in particular on those widely well known as grammar-based ones.

Furthermore, as this article shows, even dealing with such more simple

dialogue management techniques, the resulting dialogue manager can be capable to

cope with relatively advanced phenomena, as for example the cross-references to

historically spoken entities. This article is divided into two parts. In the first one, all

three techniques mentioned above are overviewed and compared to each other. The

rest of the article describes a dialogue manager, currently being developed at our

department as a part of an experimental navigation system. Especially, it is focused

on the crucial propositions and background ideas like the structure of manager's

internal model of a world (static and dynamic frames and bindings between them)

and structure of a dialogue history (history of computer and user's utterances and

spoken entities).

1 Introduction

Dialogue management is conceived in machine reasoning, in particular, finding the best

machine utterance as a response to previous user's ones and moreover keeping the discussed

task in consistency with domain possibilities. A wide variety of methods has been evolved,

embodying and regarding different complexity and usability as well. These methods are

commonly divided in several groups and even if the division is not standardized in any way, it

always involves grammar- and plan-based methods and methods for collaboration [1]. The

rest of this article is focused purely on the group mentioned very first. Our explicit research

aim is to develop a portable mixed-initiative domain-independent (multimodal) dialogue

manager coming along with a user-friendly domain dialogue editor. The manager will be

a part of a virtual navigation system. Our motivation for this domain is the elimination (or at

least repression) of the driver's need to look at the graphical display of its car navigation

during the ride (traffic safety should not be threatened). However, in order to test the manager

capabilities properly, it is planned to employ it still in another domain – the train timetable.

But this second dialogue system is currently not our primary focus – it is the manager

accomplishment and its successful application to car navigation domain.

In the following, we shortly describe grammar-based management approaches, their

advantages as well as drawbacks and, as next, we move the attention to the approach of our

dialogue manager, its overview and detailed descriptions of currently existing capabilities.

The explanation is augmented with some examples for better understanding and

demonstration as well.

2 Grammar-Based Management

Grammar-based dialogue management group contains a lot of approaches of different

complexity, among which one can count in the state-based methods (sometimes also referred

to as finite state-based) and all of frame-based variations (most generally, those employing

flat and hierarchically nested frames). According to [2], all approaches involved may be

considered as equivalent, and, moreover, transformable to a finite state automaton using

Schank's planning script.

64

2.1 Finite State-Based Approach

This approach is based on existing formalism – a finite state automaton. Therefore, it is not

unusually referred to as a transitional network approach [3], because it can be thought of as

a weighted directed graph, where every state (node) represents a system utterance. The

transition to another state (node) is conditioned with a corresponding user's utterance

matching one of edge values coming out from a current state. From a developer's point of

view, a lot of integrated environments have been evolved – a very well known one of them is

the Rapid Application Developer, a part of CSLU Toolkit [4], [5], which enables the dialogue

to be created using simply dragging and dropping icons on the screen.

An essential advantage of this kind of management is its simplicity and a highly

straightforward design capability. However, on the other hand, there are standing attributes

like the lack of flexibility and hard applicability to other domains [1]-[3], [6]. Additionally,

trying to get over the inflexibility, a state explosion may arise. A developer also encounters an

unpleasant situation when getting a confirmation process involved – generally, every

information needs to be confirmed by the user separately. Moreover, he is not given the

possibility to correct himself (after a misrecognized user input, the system generally moves to

another state). As a solution to this pitfall, a special key-word, for example "Back", may be

considered – then, corrections can be achieved using an "undo" operation [7].

Regarding its shadow sites, the finite state approach has a very constrained area of

applicability. According to [8], it is best suited to "applications in which the interaction is well

defined and can be structured as a sequential form-filling task or a tree, preferably of yes/no

or short answer questions."

2.2 Frame-Based Approach

As seen above, the pure state-based management is very restrictive one because of all its

disadvantages coming along. The frame-based management reflects most of them and

provides solutions. Here, the basic construction asset is a frame (sometimes also referred to as

entity, topic or template, etc.) consisting of a set of slots. For controlling the dialogue flow,

the system needs to select one of empty (generally unsatisfactorily filled) slots. For example,

in VoiceXML, a XML-based language for creating voice response application, such algorithm

is called the Form Interpretation Algorithm (FIA) [9]. To get the user aware of what slot the

system has chosen a prompt attached to that slot needs to be sent to an output module.

Therefore, the purpose of frames is to cumulate the information gathered from the user.

Traditionally, a slot is assigned a set of event handlers instructing what actions the system

needs to carry out when certain situations arise during the conversation. Back in VoiceXML,

such events are "no-match" (the user's response is entirely out of acceptable utterances) or

"no-input" (the user kept silent for a certain period of time).

Employing the frame-based management, the dialogue becomes more flexible in comparison

to the previous approach because the possibility to take initiative during the discussion is held

not only by the system but, instead, it is distributed between both partners [8] – the so-called

mixed initiative. The scenario of mixed initiative dialogues is nearly the same in every case.

At the beginning, the user makes a suggestion what he/she would like to talk about. However,

a complete demand is provided very seldom or is not recognized properly, which implies the

reason why the system takes the initiative and asks the user additional questions to obtain the

missing necessary information.

A wide variety of frame types has been developed. The original idea of flat frames

(VoiceXML) has been overcome with hierarchical (or nested) frames. Moreover, other case-

based approaches emerge, for all of them let us remind the E-Forms present in WHEELS [10].

According to [3], the frame-based management is often involved in information retrieval

systems – traveling, financial or timetable services. Still, because of simplicity, its pure

version cannot be used in more complicated tasks [11].

65

3 Dialogue Manager Approach Description

The dialogue manager being currently developed at our department derives from its previous

multimodal version [12] employing pure flat frames. Conceptually, this previous version was

evaluated to have context and history as weakest parts, too much simple approach was the

reason. The manager was applied in an experimental car navigation system domain, as well as

the upcoming will. The reason why we have decided to remake it is that it did not seem to

provide algorithms strong enough for a generally wider spectrum of collaborative tasks –

a language model of a flat frame-based system cannot provide a necessary flexibility, because

the user to be able to refer a desired system frame (task) must utter a whole particular phrase,

which happens seldom, implying in the final, the novice user to have to follow exactly

predefined utterances. This way, the conversation reduces to state-based model when going

through the menus. However, more common is an incremental demand (as our observations

show), where users rather than to express the whole command, try to explore the system step

by step, usually beginning with a sentence containing a key verb (“navigate”, for instance).

Currently, the new dialogue manager can cope with disambiguation and history creation and

exploitation. However, it still lacks some core functionalities (as for example confirmations,

corrections and subdialogues dealing). These will be accomplished very quickly, however, we

have firstly focused our attention to the modules where the ancestor version of the manager

seemed to have drawbacks – the context and the history modules. Moreover, instead of flat,

hierarchical (nested) frames were necessary the dialogue manager to be able to deal with,

enabling the users' incremental exploration.

 Figure 1 – The manager overall structure consists of three modules, the fourth is still to be accomplished

The manager current overall structure (see Fig. 1) consists of three modules:

• Context – a module maintaining a current model of a dialogue (for detailed description see

below),

• History – a “memory” of a dialogue (see below),

• Core – main module directing both of previous ones, and interpreting current model of

a dialogue.

The fourth, Prompt Planner, is still to be accomplished, and should enable the manager to

produce more natural prompts employing common human language phenomena, as for

example ellipsis. The manager repeatedly carries out three tasks:

• as soon as user's utterance semantic information is retrieved, it undertakes integration

procedure (through History module into Context),

• when integrated, the Core initiates interpretation of current state of Context resulting in

a system response, augmented with a response semantic information,

66

• finally, semantic information of the system response is integrated in the same way as the

user's one.

This is manager's load in brief, more detailed description follows below.

3.1 Context Property

This section is rather than purely on the Context module focused on the context approach as

a whole. As mentioned above, the context deals with hierarchical frames. This approach was

chosen not only because it seems to be a promising way of frame-based management [10],

but, additionally, because it enables the users to explore the system incrementally, thus allows

more natural information representation in comparison to flat counterparts.

 Figure 2 – A hypothetic context contains static frames MainLoop and Delete, dynamic frames TripGoal and

 TelNumber and three instances of another dynamic frame Shortcut containing different values

For the upcoming text, let us stick to the navigation domain and consider a hypothetic context

containing a situation, where the driver wants to delete at once two addresses and one number

stored under different shortcuts in the system (see Fig. 2). To make it possible, several types

of frames must be defined – MainLoop (a top-frame constantly present in the system to ask

the driver to begin a task), Delete (a frame asking for and maintaining what should be deleted

and executing this demand making changes in the domain world), TripGoal and TelNumber

(two frames asking for and maintaining system shortcuts), and Shortcut (a frame containing

the information about a particular predefined system shortcut). According to the situation

described, the TelNumber frame in the figure above consists of two Shortcut subframes. The

frame-subframe relation is expressed using directed bindings. For the purpose of History

module implementation simplicity, the context is made up of bindings only, implying every

frame to be represented in it as a reflexive binding. The context contains a given frame if it

contains its reflexive binding. In our approach, we define two general types of frames –

dynamic and static, respectively. The first mentioned ones are expected to be used as

information containers only (TripGoal, TelNumber and Shortcut), whereas the second ones

are intended to be key frames and hold additional actions as well (MainLoop and Delete).

Additionally, every frame contains a slot counter and a message queue, both are processed

during the context interpretation.

In the context interpretation, it is necessary to carry out two essential operations: firstly, find

an unsatisfactorily filled slot and evaluate its prompt, and secondly, integrate an incoming

user's response semantic information. The finding problem is resolved very easily. Every

frame is in the design phase assigned a priority (the nested a frame is, the lower priority it

holds). The manager begins to process the highly prioritized frame queue containing

a message. If a FRAME_INTERPRET message is popped, a slot addressed by the slot counter

is evaluated. If it misses a value, then unsatisfactorily filled slot has been found and

appropriate prompt is formulated. The same situation arises if it misses a subframe. If it

contains a series of subframes, the searching problem is recursively transmitted to them.

67

Finally, even if the recursion did not find any slot and the message queue is empty, then the

second highly prioritized frame undertakes this procedure. The manager ends the

interpretation, if there is no frame with non-empty queue.

To demonstrate our integration problem resolution, let us focus back to the hypothetic

situation of deleting some shortcuts. Now, consider that as soon as the system asks for

deletion confirmation, the user augments his demand with "And the Cottage shortcut too,

please" resulting in the ASR (Automatic Speech Recognition) to produce the following

semantics:

Figure 3 – The semantics for the sentence “And the Cottage shortcut too“

First in the integration process, the manager tries to transform the provided semantic

information into a set of integration trees covering all meaningful hierarchical combinations

of frames (currently existing in the context as well as the non-existing ones, i.e. entirely new).

The process description is expressed in the following steps:

1. For each elementary semantic information find and maintain all possible paths through the

frame hierarchy. Here, the frame Shortcut containing “Cottage” can be located either as

a TripGoal subframe, or TelNumber subframe, i.e. two paths are found.

2. Merge groups of paths starting and ending in identical frames into one path. Here, both

path start and end in identical frames, and are, therefore, merged in one, still regarding the

choice between TripGoal and TelNumber.

3. Combine paths into a set of trees. Evaluate them according to different aspects of their

nodes, like whether a particular frame is new or currently present in the context, static or

dynamic, or whether the binding between related nodes is a part of a path to a slot, which

prompt has been formulated as last, etc. Here, only one path exists, therefore only one tree

is produced, and its evaluation is needless – there is no other one to compare it with (see

the next step).

4. Select a tree having the highest evaluation. If there exist more than one, select the first of

them (more sophistical strategy is still to be devised).

For our semantic information, this process results in the integration tree depicted in Figure 4:

Figure 4 – The integration tree of user's sentence “And the Cottage shortcut too, please”. Its third node is made

 up of two subtrees

This tree now dictates the integration method. Starting in its root, the MainLoop and Delete

frames – both currently exist in the context, therefore, neither of them will be recreated. In

contrast, although three Shortcut frames exist there, a fourth will be created because it holds

an unique value. However, its superframe (“third” node) is ambiguous in the tree, reflecting

the location of ambiguity in user's utterance – as mentioned above, the shortcut Cottage may

be conceived either as a trip goal shortcut, or a telephone number shortcut. Thus, the dialogue

manager formulates a clarification question and binds the new Shortcut frame to an internal

68

auxiliary static Disambiguation frame. As soon as the user utters a resolution (for example

“I meant a trip goal”), the Disambiguation frame has gathered all necessary information and

interconnects both frames. As next, it disappears from the context.

3.2 History Property

In this section, the history approach will be presented – again instead of pure History module

description. History structure (inspired by [13]) was designed with respect to an easy

implementation of manager upcoming extensions (see "Future work" at the end).

Back in the context, we define a frame to be "sealed" If the following applies at once:

• the frame has filled and confirmed slot value (if any),

• every slot in the frame has acceptable amount of sealed subframes bound,

• bindings between the frame and all its sealed subframes are confirmed,

• there are no unsealed subframes bound.

Figure 5 – The history structure consists of references to particular entities implying from user's or manager's

 utterances

We perceive the dialogue history as a storage of sealed frames, shortly entities. For example,

one entity is a set of TelNumber and both Shortcut frames augmented with all interlaying

bindings (see Fig. 5). As mentioned above, the context is made up of bindings only, benefiting

in History module implementation simplicity. Here, the simplicity lies in entities made up of

bindings only, as well (see forth).

Every time the Context module integrates incoming semantic information, the History module

starts searching for newly emerged entities. If any found, it stores them ordered from the

concrete to the general ones (from Shortcut to MainLoop, for example) in a new structure

called utterance, which is initially empty. For all entities which it holds applies, that they

imply from a particular user's utterance (which may be a confirmation, for example).

The inverse operation, reading from the history, occurs implicitly, which states for as soon as

the ASR module provides a semantic information – any. The semantic information is

transmitted to the History module. The History module treats it as an entity description and

tries to find a match. If unsuccessfully, it sequentially begins to drill into the information

structure and repeats the reading. Otherwise, if successfully, two operations are needed to be

taken. Firstly, the original semantic information must be replaced with a particular entity

semantic information reconstruction. Secondly, the History module needs to "remember" this

successful reading. The information flow diagram (see Fig. 6) introduces more clarity in the

semantic information processing.

69

Figure 6 – Semantic information processing diagram branched for user's and manager utterances

The dialogue manager is prepared to deal with a "history shifting" as well, i.e., processing

utterances similar to "What about the previous train?" (in a train timetable domain). It is

achieved perceiving the actual context as the “history of right now" and exploiting the

information in successful readings stack for the history searching continuation.

However, although the whole semantic information processing may feel as unwieldy and

lacking flexibility (it does not transform the given semantic information into any internal

structures), it provides enough robustness to make possible the system utterances to undertake

the same way of dealing as the user's ones. In fact, the system prompt is tagged which helps to

convert it into a semantic information, which is, in turn, confronted with the history reading,

context integration and finally history writing, indeed. This is present because the system is

not expected to only interpret (read) the current context information, but instead, it may

introduce entirely new one as well (inferring from database etc.). Thus, both the user and the

system are given the possibility to make changes in the context, which reflects the mixed

initiative and the collaborative behavior, respectively.

4 Future Work

As mentioned above, the manager is not completed yet, instead, some functionalities in the

core are missing. The correction and confirmation capabilities – both should be accomplished

in the manner of disambiguation, i.e., "little" static frames not observable from the final

developer's view. This approach seems to be clear and found an inspiration in McGlashan's

goals [14]. However, more complicated challenge is expected to be the appropriate semantic

information design, which the ASR module should produce. It is not clear whether one

semantic system would be enough for both of them. Such information might look like:

Figure 7 – One semantic system might cover both corrections and confirmations arising during dialogue

Last but not least, we want to augment the History module with enabling it to accept sets of

entities instead of one entity at a time. The user would be offered the possibility to refer to

a particular entity within a set by simply describing it, for example as "the second". However,

another disambiguation problem has to be resolved – “the second” may refer either to an

entity or a date (the second of May) [15].

Apart of missing functionalities, we also need to augment the manager with "old" existing

capabilities of its ancestor [12]. Among them, the user's initiative restriction, achieved using

70

so called interaction modes, can be counted in. The manager switches to a more restrictive

mode when notifying a stagnation of dialogue flow. The mode approach found a motivation in

[8].

Currently, the manager is written in ECMA-Script (which satisfies the demand of portability),

however, in the future, we would like to migrate to another platform. We have not decided

about a particular one yet, our favorites are Java and Flash. We tend to the second one, not

only because of its strong multimedia presentation capabilities, but easy – to create user

interface design as well. On the other hand, we see the local in- and out- communication in

Flash as the biggest drawback, which Java is free of.

5 Conclusion

We are on a long-term development hoping that our effort will result in a portable extendible

domain-independent (multimodal) dialogue manager. In this article, we have presented its

inner structure, context and history approaches, which are still not completed yet, however,

seem to be on a good way to achieve our mentioned goal.

References

[1] Churcher, G. E., Atwell, E. S., Souter, C.: “Dialogue Management Systems: a Survey and

Overview”. University of Leeds, School of Computing Research Report, 1997.

[2] Wilks, Y., Catizone, R., Turunen, M.: “Dialogue management: State of the Art Papers”. In:

COMPANIONS Consortium, 2006. Available at:

http://www.companionsproject.org/downloads/Companions_SoA2_Dialogue_Management.pdf.

[3] McTear, M. F.: “Modelling spoken dialogues with state transition diagrams: experiences with the

CSLU toolkit”. ICSLP, 1998, paper 0545.

[4] McTear, M. F.: “Using the CSLU Toolkit for practices in spoken dialogue technology”. In:

MATISSE, 1999, pp. 113-116.

[5] Sutton, S., Cole, R., de Villers, J., Schalkwyk, J., Vermuelen, P., Macon, M.: “Universal speech

tools: The CSLU Toolkit”. In: Proc.of the ICSLP, 1998, pp. 3221-3224, Sydney, Australia.

[6] Melichar, M.: “Template driven dialogue management approach in the framework of multimodal

interaction”. PhD. thesis proposal, EPFL Lausanne, 2005.

[7] Araki, M., Kaga, A., Nishimoto, T.: “Comparison of 'Go back' implementations in VoiceXML”.

In: Proc. of ISCA workshop on error handling in spoken dialogue systems, 2003, pp. 31-34.

[8] Levin, E., Narayanan, S., Pieraccini, R., Biatov, K., Bocchieri, E., Di Fabbrizio, G.: "The AT&T-

DARPA communicator mixed-initiative spoken dialog system". In: ICSLP, 2000, vol.2, pp. 122-

125.

[9] W3C, Voice Extensible Markup Language (VoiceXML), Version 2.0, 2004. Available at:

http://www.w3.org/TR/voicexml20/.

[10] Cenek, P.: “Hybrid dialogue management in frame-based dialogue system exploiting

VoiceXML”. PhD. thesis, Masaryk University, Brno, 2004.

[11] Bui, T., H.: Multimodal Dialogue Management - State of the Art, CTIT Technical Report series

No. 06-01, University of Twente (UT), Enschede, The Netherlands, 2006.

[12] Matoušek, V., Nestorovič, T.: “Hlasová komunikace s navigačním systémem automobilu”. In:

Proc. of Int. Conference “Navage”, Prague, 2006.

[13] Zahradil, J., Müller, L., Jurčíček, F.: “Model světa hlasového dialogového systému”. In:

Proc. of Znalosti, 2003, pp. 404-409.

[14] McGlashan, S.: “Towards multimodal dialogue management”. In: Proceedings of Twente

Workshop on Language Technology, vol. 11, Enschede, The Netherlands, 1996.

[15] McGlashan, S., Fraser, N., Gilbert, N., Bilange, E., Heisterkapm, P., Youd, N.:

“Dialogue management for telephone information systems”. In: Proc. of the International

Conference on Applied Language Processing, Trento, Italy, 1992.

71

