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Abstract: Today’s speech recognition systems are mostly based on Hidden Markov 

Models which are known to have good modeling ability based on a training database. 

Such a database is required to be very large, often many hours of recordings and it 

must contain all speech units of interest with proper transcriptions. This article 

describes an isolated words small vocabulary speaker-dependent recognizer which is 

designed to avoid the need of excessive amount of training data. The recognizer uses 

example-based approach built around the dynamic time warping technique and k-

nearest neighbors classification with additional preprocessing via recurrent artificial 

neural network and gaussian mixture model-based endpointer. 

1 Introduction 

The most challenging continuous-speech large-vocabulary recognition systems rely on the 

generality and fast evaluation of Hidden Markov Models [1], which are indeed the most 

successful platform for the large-extent recognizers. In the field of small vocabulary isolated 

words recognition with emphasis on user-dependency can be though found other viable 

methods [2, 3] that are specific in this area due to their limited extensibility to larger systems. 

A remarkable quality of these approaches is their tolerance to the limited amount of training 

data. The training database can moreover be specifically focused only on the needed units, 

e.g. the set of words to be recognized by the system. Such a limited database is easily 

obtainable from the target user(s) of the system for the specific set of word commands. 

The basic principle of limited-data word recognition methods is the direct comparison of the 

received sample against the available database. The natural inequality of repeated realizations 

of the same word in the sense of variable duration and uneven lengths of different intra-word 

sections calls for a robust time-alignment techniques, among which the most popular is the 

dynamic time warping (DTW) [4-6]. This algorithm allows comparison of two words in the 

segment-wise manner using any of the known distance-measurement approaches. If the global 

distance to one of the word classes falls below a given threshold, it is identified as the specific 

word. 

Reliable operation of this kind of classifier requires that the input utterances are precisely 

scaled in amplitude to fit the given stored realizations as closely as possible. Another issue to 

deal with is the background noise, which is added to the speaker’s signal. This noise must be 

taken into accounted and, if possible, reduced without intolerable distortion of the resulting 

data [7, 8]. 

Following chapters describe individual parts of a spoken commands recognizer, which is 

currently being developed in our lab and preliminary evaluations of some performance 

characteristics. 
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2 Preprocessing of input utterances 

2.1 Signal parameterization, noise reduction 

Input speech is digitized using sampling frequency of 16 kHz, which is considered an optimal 

compromise between ability to capture high-frequency phonemes (fricatives) and need to 

store too extensive amounts of data [9]. The stream of sound samples is then segmented in 

1024-sample chunks with 75% overlap. This allows precise tracking of fast-varying spectral 

changes whilst giving good spectral resolution. Individual segments are parametrically 

described using feature vectors composed of the mel-frequency cepstral coefficients (MFCC) 

[10, 11]. Prior to construction of MFCCs, spectral representation of the input signal is treated 

for additive noise using the quantile-based spectral subtraction (SS) [8]. 

SS estimates power spectral density (PSD) of background noise from silent segments between 

the words. This estimate is then used to eliminate detected noise levels in all spectral bins 

throughout the speech. Application of this operation can be described as 

 )},(),,(ˆ),(max{),(ˆ tkXtkNtkXtkS βα−= , (1) 

where X(k,t) is the k-th PSD of the noise-corrupted input signal in frame t, N(k,t) represents 

the k-th estimated noise PSD and Ŝ (k,t) is the PSD of the denoised signal. Constants α and β 

control the amount of noise being removed from the signal. 

2.2 Voice signal strength normalization, dynamics compression 

Conventionally, speech signal magnitude is normalized either in time domain by an automatic 

gain control (AGC) algorithm or in parametric domain using various normalization techniques 

[7]. 

We propose a method of level control based on well-known masking effects of human hearing 

[12]. The method operates in log-mel-filter-frequency domain (i.e. the last step of MFCC 

calculation process just before the discrete cosine transform is applied), since this signal 

representation is the closest approximation of human way of sound interpretation in early 

stages of neural processing [12]. The basic idea is to track local maxima and minima of mean 

coefficient values across all frequencies for each segment and enforce that all values fall 

within a pre-arranged interval, which was chosen to be (0; 1). This span was motivated by the 

need for the feature vector stream to be usable by the subsequent neural network processing 

both as an input and as a teacher-forced output during the learning (see below). 

The dynamics compression of the log-mel-spectral coefficient vector stream is divided into 

two stages: firstly, a pair of attack/release look-ahead dynamics compressors is employed 

separately based on mean maxima and mean minima delineating the upper and lower 

envelope contours. These contours determine the shift and stretching of all feature vectors’ 

values to occupy the symmetrical (-2; 2) interval, which is then soft-clipped using a sigmoidal 

function to the final (0; 1) range. In order to be able to softly cut-off extensive peaks, the 

upper contour uses two serially chained compressors – the first one operates in a slower 

fashion defining overall dynamics and the second one is used only to iron out excessive peaks 

above the +2 boundary (application of the second stage assumes the shift and stretch have 

already been carried out). Both minimal and maximal contour boundaries are subject to 

additional constraints based on observed signal properties to avoid excessive amplifying of 

background noise or picking of too weak random sounds. Lower contour boundary is 

deliberately set a bit higher than would correspond to the measured value to induce additional 

mild background noise suppression. Figures 1 and 2 illustrate operation of described 
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algorithms on a signal sample comprising of three repetitions of the same word having large 

differences in amplitude for each of the three realizations. 

 

  

Figure 1 - Operation of the dynamics compressor in logarithm-mel-frequency domain. Thin solid line 

shows the mean feature vectors’ maxima, thin dash-and-dot are the minima. The thick lines (solid and 

the dash-and-dot) correspond to the upper and lower envelope contours as are found by the dynamics 

compressors. Graph a) shows the situation on the input of the compressor, in graph b) have all the 

values already been shifted to the (-2; 2) interval and finally in graph c) all excessive peaks have been 

ironed out by the second stage compressor. Note that the lower contour boundary in a) is slightly 

above the background noise level to avoid amplification of noise. 

Figure 2 - a) Input signal in time domain (time axis in seconds), b) feature vectors after the dynamics 

compression with x-axis in segments and y-axis corresponding to the mel-frequency. 
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2.3 Speech conversion 

Optimal recognition accuracy requires that the database speech samples are as close to those 

received from the speaker as possible. It is unfeasible to include every speaker to the DTW-

based classifier due to sharply increasing computational complexity as the number of database 

samples rises. Therefore it is more advantageous to alter just received speech to bring it closer 

to the available word samples. Since the system uses one reference speaker, all the other 

speakers’ utterances need to be modified to match the reference speaker’s characteristics. This 

is often referred to as speaker adaptation or speaker normalization. Often used techniques are 

vocal tract length normalization [13], cepstral mean and variance normalization [14], various 

kinds of spectral transformations [15, 16] and finally utilization of artificial neural networks 

(NN) with various strategies exploiting great potential of these generalized structures. 

Several authors used NNs trained on pairs of samples with one belonging to the reference 

speaker and the other one to the speech to be converted [17, 18]. Often used multilayer 

perceptron structure, however, neglect the fundamental property of human speech being a 

continuous stream of timely-interdependent elements which cannot be simply chopped into 

autonomous units. Hence our solution is to employ fully interconnected recurrent neural 

network (RNN) [18] with 150 nodes. This kind of NN has the ability of exploiting both 

spatial and temporal patterns (theoretically to unlimited time depth) in order to produce the 

desired output pattern for current time frame. 

Teacher-supplied outputs are obtained by DTW aligning of two equal speeches given by a 

speaker to be learned and by the reference speaker. RNN therefore learns to convert 

parameterized speech of one speaker to “look like” being produced by the other one. The 

best-matching pairs of the two speeches found by DTW are freed of duplicates; hence not all 

segments in the input speech for the RNN have assigned prescribed outputs. This gives the 

RNN additional challenge of treating unmarked segments in a right way leading to global path 

following marked segments. Additionally, each prescribed output is delayed by a fixed 

amount of segments to give RNN necessary time to observe certain amount of incoming 

speech stream before it is required to decide about what output should be produced. This 

allows it to overcome glitches or imperfectly uttered phonemes based on the following 

phoneme continuation. Learning algorithm used is the backpropagation through time (BPTT) 

with weight update procedure according to that proposed in [19] giving the fastest 

convergence for large networks. The teacher-forcing technique is used to further speed up the 

training process. Each speaker provides two continuous utterances: one as the data on which 

the RNN is trained and one as the verification testing data to prevent over-fitting. The training 

procedure is carried out until a minimum overall error for the testing utterance is reached 

assuring maximal generalization performance of the resulting RNN. This over-fitting 

avoidance is crucial due to the fact, that the training data is composed only of short amount of 

speech (typically a few minutes) in agreement with overall philosophy of proposed system. 

Figure 3 shows feature vector sequences corresponding to 5 spoken words illustrating 

conversion of a given speaker’s speech by the RNN to bring it closer to the reference 

speaker’s utterance of the same words. An interesting side-effect of RNN’s operation is robust 

removal of various random non-speech sounds (breathing, pops/clicks etc.), because the input 

learning data contained plenty of these imperfections but the exemplary reference speaker’s 

speech was hand-edited to enforce silence in pauses between the words. It seems that the 

RNN learned specific time-space patterns of the speaker’s pronunciation to cancel out 

everything uncommon to his/her articulation. 
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Figure 3 – Parameterized speech of a speaker on the input of the RNN a), output of the RNN b) and 

the same utterance from the reference speaker c). The RNN is trained to convert a) to look as much as 

c) as possible in a minimum mean square error sense (speeches are not time-aligned). 

3 Detection of word boundaries 

Since the DTW-based isolated words recognizer operates on the single-word basis, it is 

necessary to provide a word-identifying classifier, the endpointer [20]. It was chosen to use a 

gaussian mixture model (GMM) [18] – based statistical approach with two specific gaussian 

classifiers working in serial. The first classifier uses two classes: speech vs. non-speech. Both 

classes have assigned 30-mixture GMMs, whose feature space is composed of MFCCs, their 

1
st
 and 2

nd
 derivatives obtained from 3

rd
 order polynomial regression and mean absolute error 

of the regression fit over neighboring 5 segments. The second classifier is specifically 

designed to discriminate between the starts and ends of words; thereby it is trained only on 

boundary points and its two classes are start/end. These classes also uses 30-mixture GMMs, 

but the feature vector is composed of the 3
rd

 order polynomial coefficients and mean 

probability density difference before and after the given segment obtained from the previous 

classifier’s outputs in span of 5 segments. This cascade, together with certain time constraints, 

is able to mitigate many false-positive detections which could occur if only one-stage 

classification was used. All probability densities are smoothed out by moving average thus 

random glitches and local miss-classifications have little impact on overall performance. In 

order to be able to set the balance between false positives and misses, the sequence between a 

given start-end pair must have higher-than-threshold average value of the log-likelihood of 

speech minus silence class. 

We are currently investigating means of increasing robustness of the endpointer by 

constructing a set of GMMs for a range of signal-to-noise (SNR) values. Since it is 
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impractical to have too many such models, it was decided to store 6 settings equally 

distributed over the supported SNR range. The actual probability density value for arbitrary 

SNR of this range is then calculated by Hermite spline interpolation of these PDFs in a point 

given by the current feature vector. Figure 4 shows measured results of the word-spotting 

accuracy for a range of additive white gaussian noise (AWGN) SNRs (most of them falling 

between the trained values thus relying on the described interpolation of PDFs). No false 

positives were detected; amount of misses is zero above SNR = 4. 

 

Figure 4 – Histograms of startpoint (solid line) and endpoint (dashed line) variations in units of 

segments (roughly 16 ms per segment) for a range of testing SNR values of AWGN. 

Obviously, AWGN poses little challenge to the classifier; further work will therefore 

concentrate on more complicated types of noise (car, bubble etc.). Extension to other noise 

types could be achieved by multi-dimensional interpolation in a similar fashion to the current 

design. A precise noise type identifier will play a significant role. 
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This classifier clearly depends on the amount of training data, which could suggest a 

contradiction to the whole system’s philosophy. The simplest two-class case, however, allows 

decent characteristics even when trained only on relatively few examples given by small 

group of speakers. 

4 Word classification 

As already mentioned, classification of received spoken word commands is carried out using 

dynamic time warping of stored words towards received utterances and measuring the global 

distance of these pairs. Among these distances the most probable word class is identified via 

the soft-voting k-nearest neighbors method [18], forming the core of the example-based 

approach. DTW uses intersection of Sakoe-Chiba band and Itakura parallelogram as the 

global constraint; the dynamic programming path is also subject to symmetrical local 

constraint defining maximal allowed number of steps in one of two viable off-diagonal 

directions. For measuring similarity of aligned segments the Mahalanobis distance measure 

[2] is utilized. A unique covariance matrix for each segment of every stored word is employed 

to cover natural variances of different phonemes within a word. These matrices are found 

during construction of the classifier prior to its usage by comparing each example word 

against all the other ones available from the same class. This slight detour from strictly 

example-based approach is awarded by better recognition accuracy compared to any fixed 

measures (absolute distance, Euclidian distance etc.). The whole classifier module is still in 

early stages of research, therefore no exact representative results are available yet. Current 

work is focused on improving discriminability of competing classes by utilizing more of the 

time-related information in speech by varying local DTW constraints in accordance with 

observed dispersion of word sub-units. This, however, might lead to increased demands on 

the amount of available training data eliminating the primary advantage of the system. 

5 Conclusion 

A basic structure of an isolated-words small vocabulary speaker-dependent isolated words 

recognizer was outlined. The design philosophy is aimed at achieving decent recognition 

accuracy without the need of excessive amounts of training data. Several key points necessary 

to overcome performance drops caused by speech variations were described: a dynamics 

compressor for ensuring consistent feature vector values, recurrent neural network for 

alleviating speaker-dependent differences and noise-robust endpointer for identyfying word 

boundaries. The whole system is yet in early stages of development and is expected to grow in 

complexity as the need for higher reliability will identify concrete weak points. 
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