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Abstract: This work presents an approach for parameter estimation and predic-

tion of the Fujisaki model for Argentine Spanish. Language hypotheses were pro-

posed for estimation and tested by means of genetic algorithms. These hypotheses

were validated by comparison of the estimation performance relative to the stan-

dard method. Prediction was then calculated based on input text information and

performed by CARTs reached a performance comparable to approximations pre-

sented for Japanese and English. Objective measures showed that the predicted F0

contours are not close copies of the originals, nevertheless perceptual judgments

revealed an impression of good quality for the intonation which makes the method

a valuable tool for the development of TTS systems.

1 Introduction

The fundamental frequency contour is the key parameter to achieve high quality synthesis in

Text-to-Speech (TTS) systems. There are marked differences between intonation contours of

different Spanish variants. The Argentine Spanish intonation contour in particular shows the

strong influence of various romance languages: e.g. Neapolitan Italian which makes it different

from Madrid or Central American Spanish [2]. An intonational model that has been tested for

different languages was proposed by [4]. This model -called superpositional- is hierarchical,

additive, parametric and continuous in time. It allows the calculation of a reduced parameter set

that represents real intonation contours in a compact and automatic way. We choose this model

for our proposal based on the validity of the model for Argentine Spanish [5]. This model

analytically describes the F0 contour in a log scale, as the superposition of three components:

a base frequency (Fmin), tonal accents and phrase accents. Phrase accents are calculated as

the response to a second order lineal filter critically excited with a delta function called phrase

command. Tonal accents resulted from the response to the same filter, excited with a step

function called accent command.

Parameters α and β in Fujisaki equation, characterize the dynamic properties of the laryngeal

mechanisms of phrase and accent control. Together with γ they can be considered practically

constant for all speakers. Fmin must be estimated for each emission. Finally, the parameters to

be calculated are the existence or not of phrase commands, amplitude and position values of

the phrase accents (A f and T 0), amplitude and position values of tonal accents (Aa, T 1 and

T 2). The complex formulation of the model requires an automatic parameter extraction ap-

proach from F0 measurements. One of the standard methods is analysis-by-synthesis [9]. This

requires a complete search by quantified steps, within a reasonable range for each parameter.

The iterative process continues until the best value combination fits the measured contour.
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Our database consists of 741 declarative sentences extracted from Buenos Aires Argentine

newspapers. The sentences contain 97% of all Spanish syllables, in both stress conditions and

all possible syllabic positions within the word. A native female speaker read the sentences

in a sound proof chamber. Recordings were made with an AKG dynamic microphone and

16 Khz/16bit conversion. The speaker was instructed to read the sentences with natural tonal

variations. Each sound file was manually labeled twice. The files were labeled in different

layers: phonetic, orthographic, pause levels between words, and tonal marks according to an

extended ToBI method for Argentine Spanish [7]. Parts of speech and syntactic layers were also

indicated.

The structure of this work consider that the way to go from the input text to the corresponding

F0 contour for a sentence requires estimation defined as the process by which the model param-

eter based on the required F0 contour is calculated, and prediction defined as the process for the

model parameter calculation based on the input text. In Section 2 we present the model estima-

tion method, in section 3 the model’s prediction procedures. Perceptual tests are evaluated in

section 4 and finally, in section 5 we present our conclusions.

2 Model estimation

A new method based on Genetic Algorithms (GAs) and linguisitc restrictions for the superposi-

tional F0 model parameter estimation is presented. The idea is to reduce the speaker dependent

parameters as much as possible and then estimate the remaining parameters, which are sup-

posed to be associated with the text structure. Those can be fixed in advance or limited in

range according to our linguistic hypothesis. Others will depend on upper level information,

such as phrase type, intentionality, speaker mood, etc. Since this information is not available

in conventional TTS systems, we will suppose that the values are only influenced by the text.

In summary, our hypothesis is that model parameters will only depend on the text and that the

speaker characteristics will remain invariable.

2.1 Statistical analysis of parameter values

From statistical analysis of the results obtained before [7], we can fix α = 2, β = 20 and γ = 0.9.
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Figure 1 - Base frequency histogram, estimated by the analysis-by-synthesis method [7].

Base frequency Fmin is considered approximately fixed for a particular speaker, since it models

the vocal folds in static conditions. Fig. 1 shows a histogram of Fmin values obtained before [7],

and derived from that data we will fix Fmin = 130 Hz. This value was validated empirically for

a data base sentence set.
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Figure 2 - Model parameters histogram, estimated by the analysis-by-synthesis method [7]. a) Phrase

commands amplitude A f , and b) accent commands amplitude Aa.
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Figure 3 - Model parameters histogram, estimated by the analysis-by-synthesis method [7]. a) Distance

between phrase commands location and the beginning of the intonational phrase, b) distance between

accent commands location and next stressed vowel midpoint, and c) accent command durations.

Fig. 2 shows phrase and accent command amplitude histograms. As we can see, their values

are clearly limited to a small range, with an average close to 0.5. As the base frequency is

fixed, we can suppose that A f , and in a lesser extent Aa, could be slightly greater, in order to

compensate for cases where the value of Fmin is lower than the desirable one. Thus, we can

suppose that the range of possible command amplitude values could extend beyond value 1

(see Fig. 2). Amplitude range was set at [0; 2.55]. These range of values were also validated

empirically for the data base sentences set.

In order to define phrase commands completely, possible T 0 need to be defined. First, we

can assume that only one phrase command exists by intonative phrase, and that in addition its

location is close to the beginning of the phrase. In Fig. 4.a) the distance histogram between an

intonative group beginning and a phrase command location - denoted as T 0r- is shown.

From Fig. 3.a) we can assume that the value of T 0r is, in most of the cases, approximately -0.5

sec. As mentioned before, the effect of the phrase command is a global F0 movement, which is

added to Fmin, that will remain constant. Thus, the histogram in the Fig. 3.a) loses force, since

it was calculated when Fmin was variable. Preliminary experiments showed that if we let T 0r

vary in [-0.512; 0] sec., excellent results are obtained.

Accents commands will produce F0 local movements that are associated with tonal accents. For

most languages included Spanish, tonal accents only occur at the stressed syllable of content
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words. Then it is possible in turn to associate accent commands with the content word stressed

syllable.

Even though not all stressed syllables produce tonal accents, we will initially assume that all

stressed syllables in content words have an associated accent command. Accent location (T 1),

is measured relative to a reference time located at the center of the closest stressed vowel, and it

is indicated as T 1r. In Fig. 3.b) the T 1r histogram is shown. In average, T 1r is approximately -

0.1 sec. The figure confirms our hypothesis that accent command location and stressed syllables

location can be associated. In this work T 1r is allowed to vary between ± 0.512 sec. In order to

complete the model, accent command duration (T 2−T 1) must be set. In Fig. 3.c) the T 2−T 1

histogram can be observed, and from this, the range of its possible values is limited to [0; 0.512].

In Table 1 we have summarized the possible model parameter values fixed in this paper.

Table 1 - Values and ranges of possible values of model parameters. Time values are expressed in

seconds. T 0r is measured relative to intonative phrase beginning, and T 1r is measured relative vowel

center.

Fmin α β γ A f Aa T 0r T 1r T 2−T 1

130 2 20 0.9 [0 ; 2.55] [0 ; 2.55] [-0.512 ; 0] [-0.511 ; 0.512] [0 ; 0.512]

2.2 Genetic algorithms

Genetic Algorithms are a procedure set for optimization and problem search resolution. They

are based on biological evolution precepts: population based selection, sexual reproduction and

mutation [6]. Through selection we establish which member of a population will survive to

reproduce and be parents in the next generation; and through reproduction we get the mixture

and recombination of the descendants. This gene mixture allows the species to evolve more

quickly than they would if they only had the copy of the genetic material of one of their parents.

The principles of GAs are based in scheme theory [6], in which the fundamental theorem of the

GA ensures its convergence.

2.3 Experiments and Results

When implementing a GA, we have to define a set of parameters: codification type, selection

method, fitness function, cross and mutation methods, cross and mutation rates, number of

individuals, and stop condition. In this work we used: binary codification, coding the variables

corresponding to amplitudes (A f and Aa) with a resolution of 0.01, and times (T 0, T 1 and T 2)

with a resolution of 0.001; roulette method, with elitism for the selection; the evaluation was

made with fitness function define in the Eq. 1:

fi(n) =
1

1+MSEi(n)
(1)

where fi(n) is the individual’s fitness i in the n generation; the reproduction was made with two

points cross, with a probability of 0.5, and a uniform mutation with a probability of 0.1; the

number of individuals was fixed to 80; the maximum fitness of 0.1 or 50000 generations, as

stop criterion.

The number of individuals, as well as cross and mutation rates, were fixed in an empirical way

after a series of tests with a corpus sentences set. With this set up, five runs were made over

each of the 741 sentences. Results are shown in Table 2. Root Mean Square Error (RMSE)
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and average Correlation Coefficient R2 values are similar to those obtained with the analysis

by synthesis method [7, 9] where RMSE was 16 HZ and R2 was 0.93 employing the same data

base.

In Fig. 4 an example of F0 modeling with the superpositional model is shown, where the

parameters were estimated with GAs. In Fig. 4.a) the real (dotted line) and estimated (solid line)

F0 contours are shown; and in Fig. 4.b) the phrase commands (A f ) and the accent commands

(Aa) are shown. The dotted lines correspond to SAMPA labeling. Estimated F0 values follow

well the movement of real values. For this sentence, an RMSE of 32.7537 Hz. and a R2 of

0.8985 were obtained. In Fig. 5 and Fig. 6 histograms of model parameters obtained with

GAs are presented. Amplitude parameter shapes a) and b) are similar to those presented before.

Main diferences are noted in time parameters.

Table 2 - RMSE and R2 obtained for 741 sentences. The values are expressed in Hz.

Mean Standard deviation Minimum value Maximum value

RMSE 16.27 6.94 7.34 53.01

R2 0.91 0.08 0.033 0.99
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Figure 4 - Result of the superpositional model for the phrase Ordenan demoler la ilustre cámara de

comercio (They ordered to demolish the distinguished chamber of commerce), where the model param-

eters were estimated by a GAs. a) Real F0 (dotted line) and estimated (solid line) contours, and b)

Phrase commands (A f ) and accent commands (Aa). The dotted lines correspond to SAMPA labeling.

2.4 Discussion

We have presented a novel method to estimate model parameters from speech waveforms and

their corresponding texts. It is based on a set of empirical rules that allows the association of
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Figure 5 - Amplitude command histograms estimated by GAs and linguistic restrictions. a) Phrase

command amplitude A f , and b) accent command amplitude Aa.
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Figure 6 - Location and duration command histograms estimated by GAs and linguistic restrictions.

a) Distance between the phrase command location and the beginning of the intonational phrase, b)

distance between the accent command location and the midpoint of the nearest stressed vowel, and c)

accent command duration.

syntactic structures to model components. Model parameters are delimited prior to their value

estimation by GAs. Results show that the method performance is similar to other algorithms

previously used and principally it helps to verify existing relations between syntactic structure

and model parameter values. The main disadvantage is a high computational cost, but it occur

offline in a complete TTS system.

In the following section, estimation results are used as a base to propose a parameter model

prediction method from text.

3 Model prediction from the text

Classification trees are one of the more used non-parametric supervised inductive learning meth-

ods in the areas of natural language processing and speech processing. A classification tree

is a way of representing the knowledge obtained in an inductive learning process. The al-

gorithm proposed by [1], well-known as Classification and Regression Tree (CART) will be

implemented. In this section we will focus on describing the experiments performed to pre-

dict the superpositional model parameter values using CARTs. Different input types were used

to feed the trees: location and length of the intonative phrase; identity, location and length of

the stressed vowel; identity of the context phonemes, in a five window length; Part-Of-Speech

(POS), in a context of two words before and two later; distance to the previous and following
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stressed vowel that has an accent command associated; parameters values of the previous accent

and/or phrase command.

For inputs corresponding to location, distance and length, different measurement units were

used: time and number of phonemes, syllables, words and intonative phrases. These mea-

surements were introduced as absolute and relative values. A tree was used for each of the

parameters to be estimated: phrase command location, relative to the beginning of intonative

phrase; phrase command amplitude; accent command location relative to stressed vowels of

content words, except the last one which does not have any associated command; accent com-

mand amplitude; accent command duration.

In order to avoid the over-training effect crossed validation was employed in the following

way: the total of the data was divided at random in a training set (80% of the available data),

used to estimate the CART, and a test set to estimate the performance (20% of the available

data). The percentage designated for training is a critical factor, because CART’s performance

is very sensitive to the quality and quantity of the data used to estimate the model. If the

percentage to test is low, a poor generalization will be obtained, and if it is high there will not

be enough data to train the models. For example, going from a 70% to 90% for training, the

classification performance improves between 4 and 5%. The experiments were made over five

possible partitions of the available data set and the results were averaged.

3.1 Results

For different data sets, a series of experiments were performed to find CART parameters that

minimize the classification error. During the experiments, we tried to minimize the classification

error of the test data by changing the depth of the tree, but at the same time avoiding that the

error was smaller than that obtained with the training data. In all cases, this depth was three.

By increasing the depth, errors diminished for the training set, but increased for the test set.

In Table 3 the results obtained for the five possible test sets are shown. During CART’s con-

struction, the method automatically selects the inputs to be used.

Table 3 - RMSE percentages obtained by predicting the superpositional model parameter values using

CARTs for five different test set.

Set # A f Aa T 0r T 1r T 2−T 1

I 7 17 16 24 29

II 8 20 16 25 27

III 9 16 15 25 29

IV 9 18 15 25 29

V 8 19 16 26 27

During CART’s construction, the method automatically selects the inputs to be used. The

different features that were chosen as inputs for each of the predicted parameters are listed

below:

• A f : previous and next phoneme identity; end of phrase distance, in seconds; previous

accent command duration, in seconds.

• T 0r: stressed vowel location of the first content word, in seconds. phrase length, in

seconds. previous accent command duration, in seconds. previous phrase command am-

plitude
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• Aa: previous and next phoneme identity; next phoneme sound; content word POS and

previous, next and next of the next word; number of intonative phrases in the sentence;

phrase length, in seconds.

• T 1r: previous and next phoneme identity; distance to intonation phrase end, in seconds.

• T 2−T 1: next phoneme identity; phrase length, in seconds; distance to intonation phrase

beginning, in seconds; distance to intonation phrase end, in seconds; previous accent

command duration, in seconds.

In Table 4, error results of objective evaluation in different scales can be observed. RMSE is

measured as the difference between the original and the predicted F0, considering only voicing

segments without interpolation of unvoiced segments. MSE values were also calculated with

F0 in the logarithmic domain to make it comparable with [10] results.

Table 4 - Errors in different F0 scales, obtained by CARTs, for the different test sets. ST: Semitones;

Ln: natural logarithm scale.

Set # RMSE Hz RMSE ST RMSE Ln RMSE ERBs MSE Ln

I 50 3.7 0.21 0.89 0.078

II 55 3.8 0.22 0.93 0.085

III 45 3.6 0.21 0.84 0.070

IV 52 3.9 0.22 0.92 0.083

V 51 3.7 0.21 0.89 0.076

Average 51 3.7 0.21 0.90 0.078

In Fig. 7 we present the original and the predicted F0. For this example, the predicted F0

follows the tonal movements present in the original, but there is a little delay and the amplitudes

do not coincide exactly.
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Figure 7 - Original F0 (+ line) and predicted (o line) for the phrase Ordenan demoler la ilustre cámara

de comercio (They ordered to demolish the distinguished chamber of commerce).The dotted lines cor-

respond to SAMPA labeling.

3.1.1 Discussion

Objective measures showed a higher error than those obtained by estimation. Besides, it exceeds

two and a half times the perceptible error that is approximately 1.5 semitones. Nevertheless, the
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error values obtained are similar to the results obtained for Japanese [10]. In Table 3, parameter

values related to the phrase commands show less RMSE in the prediction. In general, the errors

are due to an underestimation of the values, principally in the case of the phrase command

location. Besides, the system only caters for four possible values. This last point reflects one

of the greatest weaknesses of CARTs: when its output is a numerical value belonging to the

real ones, it does not have the capacity to interpolate and/or approximate values not seen in the

construction stage. At the moment, the system is less efficient at predicting the duration values

of the accent command.

4 Perceptual test

A perceptual test of the F0 contours predicted by CARTs was prepared. Twenty sentences were

re-synthesized from the test set using the PSOLA method of the program Praat. Mean Opinion

Score (MOS) and Degradation MOS (DMOS) scales [11] were used. The test was presented

to ten listeners, who perceived natural and modified sentences through a headphone [3] in an

acoustic chamber. They were instructed to evaluate the intonation quality of the re-synthesized

sentences according to the proposed scales. On average, MOS gave a result of 3.75, and DMOS

of 3.88, calculated over all the listeners and all the test sentences. These results correspond to

a good intonation quality, with a certain degree of distortion that did not bother. Present results

are similar to others as reported in [10] for Japanese and in [8] for Spanish.

In Fig. 8.a) boxplots are presented for MOS and in Fig. 8.b) for DMOS. These figures allow

us to observe that in general the tests do not have a great variance, and that sentences #18 and

#19 present the worst results in the test. On average, these two sentences were evaluated with

a regular quality intonation, and present tonal accents shifted one syllable to the right. This

maybe due to the proximity of a boundary intonation phrase without silence.
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Figure 8 - a) Box diagram of MOS and b) DMOS for the model of the predicted F0 using CARTs, for

the 20 test sentences.

5 Conclusions

In this paper a hypothesis that correlates the intonation model parameters with the input text of

a TTS system was outlined. The model parameter values are fixed or range limited. In order to

confirm the validity of the hypothesis, we made a model estimation using GAs that achieved a

similar performance to the obtained with a standard estimation method.
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CARTs achieved a good performance, comparable to other approximations used for different

variations of Spanish. Although the error is a little bit high, the perceptual tests qualified the

obtained intonation as good, which encourages the use of the proposed method as part of a

text-to-speech conversion system.
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ativas de foco amplio para el español hablado en Buenos Aires. Estudios de Fonética
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