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Abstract: Four automatic methods for estimating parameters of the Fujisaki model

are evaluated and compared with three F0 stylisation methods. Although the four

methods yield comparable results with respect to their total errors, they show dif-

ferent error distributions. Particularly, the command amplitude distributions of two

methods reveal weaknesses in accent or phrase command extraction due to arbitrar-

ily set amplitude thresholds. Also, the means of the command rates are significantly

different and their standard deviations are inhomogeneous. Finally, an alignment

of the commands of the extractors shows correspondences between 46% and 91%

of the phrase commands and 49% and 97% of the accent commands. In summary,

two of the four Fujisaki-model extractors are currently unsuitable for meaningful

phonetic as well as functional analysis and should be substantially improved.

1 Introduction

Over the last decades various techniques were developed for post-processing raw F0 contours in

order to reduce redundancy, to increase their degree of abstraction, and to derive from them per-

ceptually or functionally relevant content. These methods are of great importance, since error-

prone automatic detection methods extract F0 contours which are affected by a complex su-

perposition of microprosodic disturbances such as jitter, laryngealization, vowel-intrinsic pitch,

and aerodynamic fluctuations. In addition, these contours are interrupted by voiceless stretches

of speech. Most intonation studies are concerned with macroprosodic components of F0, e.g.

pitch-accent, boundary tones, declination etc. and thus are dependent on a reliable decomposi-

tion of the high- and low-frequency components of prosodies [16]. First, raw F0 values need

to be automatically and sometimes even manually corrected. Prior to F0 parameterisation or

modelling, a stylisation step is necessary usually consisting of interpolation, smoothing, and

data reduction.

One well-known method for parameterising F0 contours is the Fujisaki model which will be

the focus of the current study. Our goal is to compare four available automatic extractors for

Fujisaki-model parameters by means of a reference database. F0 stylisation methods serve

as a baseline to assess the error between original and reconstructed F0. Therefore, we will

first review common F0 stylisation methods, then introduce the Fujisaki model and discuss the

approaches compared.

2 F0 stylisation methods

F0 stylisation methods have two main goals: (1) microprosodic disturbances should be removed

from the F0 contour without affecting perception, and (2) F0 contours should be interpolated

during voiceless stretches of speech, as Scheffers 1988 [18, p. 982] already remarked: “listeners
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won’t perceive sentence melodies to be interrupted by unvoiced speech sounds”. Nooteboom

1997 [13, p. 644] specified that “interruptions [. . . ] are only perceived [. . . ] when they are

longer than, roughly, 200 ms. [. . . ] When the pitch after a silent interval is considerably higher

or lower than before, the listener perceives a rise or fall in pitch, as if human perception uncon-

sciously bridges the silent gap by filling in the missing part of the pitch contour”.

One of the pioneers of F0 contour stylisation, t‘Hart 1976 [3, p. 18], justifies the underly-

ing strategy by the surprisingly low sensitivity of humans to differences in pitch movements.

Scheffers 1988 [18, p. 981] points out that simple low-pass filtering is not sufficient to remove

from F0 contours irregularities that have no relation to the perceived intonation, since it “will

affect the slope and onset and offset moments of the important movements”. However, (1)

electromyographic investigations of the pars recta and pars obliqua of the cricothyroid muscle

which are mainly responsible for F0 movements [1, 2], (2) production studies concerning the

maximum speed of F0 changes [22], and (3) preliminary results from recent production studies

give rise to the assumption that the modulation frequency of functionally motivated F0 changes

hardly exceeds 3.5 Hz.

A popular stylisation method is Momel (modelling melody) introduced by Hirst & Espesser

1993 [4]: A quadratic spline aligned to so-called target points along the F0 contour yields a

smoothed version that is perceptually indistinguishable from the original and supposedly void

of microprosodic fluctuations. A much simpler stylisation method is the first-order linear re-

gression of voiced stretches of speech.

3 The Fujisaki model

The well-known Fujisaki model [2] reproduces a given F0 contour by superimposing three

components in the log F0 domain: A speaker-individual base frequency Fb, a phrase component,

and an accent component. The phrase component results from impulse responses to impulse-

wise phrase commands associated with prosodic breaks. Phrase commands are described by

their onset time T0, amplitude Ap, and time constant α . The accent component results from step-

wise accent commands associated with accented syllables. Accent commands are described by

on- and offset times T1 and T2, amplitude Aa, and time constant β . Typical values for α and β
are 3 and 20/s, respectively. Möbius 1993 [11, p. 115] chose a ratio of 1:5 for his studies rather

than 1:7 or even 1:10 which were commonly observed when analysing actual F0 contours.

Earlier extractors such as those presented by Pätzold 1991 [14] and by Narusawa et al. 2000

[12] are unfortunately not accessible and had to be left unconsidered in the present study albeit

mentioned for reasons of completeness.

3.1 Mixdorff (2000)

After F0 contour interpolation and smoothing using Momel, the resulting spline contour is

passed through a high-pass filter with a stop frequency at 0.5 Hz, similar to [20]. The out-

put of the high-pass (henceforth called ‘high frequency contour’ or HFC) is subtracted from the

spline contour yielding a ‘low frequency contour’ (LFC), containing the sum of phrase compo-

nents and Fb. The latter is initially set to the overall minimum of the LFC. The HFC is searched

for consecutive minima delimiting potential accent commands whose Aa is initialized to reach

the maximum of F0 between the two minima. Since the onset of a new phrase command is

characterised by a local minimum in the phrase component the LFC is searched for local min-

ima, applying a minimum distance threshold of 1 s between consecutive phrase commands.

For initializing the amplitude value Ap assigned to each phrase command the part of the LFC

after the potential onset time T0 is searched for the next local maximum. Ap is then calculated

in proportion to the F0 at this point considering contributions of preceding commands. The
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Analysis-by-Synthesis procedure is performed in three steps, optimizing the initial parameter

set iteratively by applying a hill-climb search for reducing the overall mean-square-error in the

log F domain. At the first step, phrase and accent components are optimized separately, using

LFC and HFC, respectively, as the targets. Next, phrase component, accent component, and

Fb are optimized jointly, with the spline contour as the target. In the final step, the parameters

are fine-tuned by making use of a weighted representation of the extracted original F0 contour.

The weighting factor applied is the product of degree of voicing and frame energy for every F0

value, which favors ’reliable’ portions of the contour.

3.2 Kruschke (2001)

Following [6, 7], after piecewise polynomial interpolation and smoothing the lowest F0>0 is

selected as a first approximation of Fb, and subtracted from the logarithmic F0 contour. Then

a Wavelet Transform using a Mexican hat wavelet is applied to the residual signal F0res1(t).

From the left to the right the first marked maximum in the resulting scalogram is searched and

picked as the maximum of a detected accent. The preceding marked minimum is selected as

a starting value for T1. T2, the point where the smoothed accent command reaches 0, is set

to the next F0 minimum. The initial values of the parameters Aa, β , and T2 are obtained in a

pattern comparison, i.e. within specific ranges Aa, β , and T2 are successively incremented to

match the local F0 contour around the accent. The parameter set with the smallest RMSE is

taken as a first approximation of the parameters Aa, β , and T2. Accent detection continues by

searching the next marked maximum after T2. Then the resulting parameters are optimized in an

A-b-S procedure, which is controlled by an evolutionary strategy. An F0 contour is generated

from the accent commands and subtracted from the contour F0res1(t). The resulting residual

contour F0res2(t) is smoothed and used for detecting the phrase commands, again by Wavelet

Transform using the Mexican hat wavelet. Each marked maximum in the scalogram is assigned

to a phrase. The point in time 200 ms before a maximum at the beginning of the F0 contour is

chosen as a first approximation of T0 and the lowest F0 value between two extremes is selected

as a starting value of T0. Ap, α and T0 are estimated by a procedure similar to that for accents.

The algorithm continues until the parameters of the last phrase have been estimated. Finally,

the parameters of all phrase and accent commands are optimized jointly.

3.3 Schwarz (2009)

Following [19], an equiripple FIR high-pass filter with a 0.5 Hz cutoff frequency separates

quadratic-spline interpolated F0 contours into high- (HFC) and low-frequency components

(LFC). LFCs contain the phrase components and the speaker-dependent baseline frequency

Fb set to the global minimum of the LFC. Accent and phrase components are extracted from

the HFC and the LFC, respectively, by searching for local extremes. Since local maxima of

the HFC roughly correspond to the accent components and their amplitudes, consecutive local

minima are used to define regions related to the onset T1 and the offset T2 time. T1 is set to the

local minimum and T2 to a position 200 ms before the next minimum. The local maxima of

phrases correspond to the amplitudes Ap and local minima delimit the regions of phrase com-

ponents. Phrase components will have at least a distance of 750 ms between them [10]. Finally,

the extracted parameters are adjusted recursively in the least-squares sense. In contrast to [9]

the parameters are optimized segmentally, i.e., the number of phrase components is given by

the number of extracted time segments and will not be changed, and accent components are

allowed to be merged or to be cancelled. Starting from the HFC, each time segment given by

T1, T2, and Aa represents an accent component that is optimized iteratively. Subtracting the

fitted HFC from the F0 contour results in a modified LFC which is also optimized iteratively.
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The procedure is carried out recursively as long as the MSE error of the modified LFC and the

previous modified LFC is larger than 5%.

3.4 Pfitzinger

This method was developed in 2004 but is yet unpublished. All higher F0 modulation com-

ponents above 3.5 Hz are removed from raw F0 values by applying sample-selective Fourier

Transform [15] and successive frequency-domain low-pass filtering with a -18 dB/oct slope,

to avoid the deformation of slopes, onsets, and offsets of F0 contours. The stylised F0 con-

tour is resynthesized from frequency-, amplitude-, and phase-locked sinusoids without inter-

ruptions at voiceless stretches of speech. This new smoothing is included in the evaluation as

PfitzingerSmooth. The smooth contour is passed through a low-pass filter (0.35 Hz cutoff, -18

dB/oct slope) whose output contour maxima are regarded as the phrase command amplitudes

and positions. Subtracting this contour from the 3.5-Hz-filtered one leads to the signal which

serves as the basis for accent command extraction. Schmitt triggering with a threshold of 0.2

and 10% hysteresis followed by delaying the achieved positions by -85 ms yields the accent

command amplitudes and times.

4 Evaluation

The evaluation is based on the IMS Radio News Corpus [17]. It consists of German news texts

read by professional speakers. The extractors by Mixdorff and Kruschke were both developed

on this corpus. Thus, reference data for the Fujisaki model exist that were extracted automat-

ically [9] and manually corrected following linguistic criteria [10] and using the interactive

FujiParaEditor [8]. Although raw F0 data are provided with the corpus extracted in 10 ms steps

via get f0 of ESPS waves [21], a substantial correction was necessary. Our data selection com-

prises 73 news articles read by one male speaker adding up to 48 minutes of speech, of which

1,670 seconds or 167,039 F0 frames were voiced. The phrase and accent command amplitudes

and positions produced by the four Fujisaki-model extractors as well as Fb, α , and β were used

to resynthesize the F0 values by means of the Fujisaki model which is defined in the log F0

domain. Thus, our evaluation is based on the semitone scale.

5 Results

Fig. 1 displays histograms of fitting errors measured in semitones for all methods examined.

Of all Fujisaki-model extractors the one by Kruschke yields the smallest standard deviation and

hence the best overall fit. It is followed by the automatic and the manually corrected versions

of Mixdorff, and the methods by Schwarz and Pfitzinger whose error distributions resemble

more the shape of the corresponding Gaussian (drawn with a grey line) whereas Kruschke’s

and Mixdorff’s algorithms produce error distributions that are more Laplace-shaped and yield

a proportionally larger number of very small errors. Momel is slightly worse than the first order

stylisation. The closest approximation, however, is reached by the novel smoothing approach.

The number of extracted phrase commands was between 924 (Pfitzinger) and 1640 (Schwarz)

while 1934 (Pfitzinger) to 4172 (Kruschke) accent commands were automatically detected. In

the following sections these results were inspected in more detail via command alignment, and

histograms of command rates, command amplitudes, and accent command durations.

5.1 Command alignment

In order to compare the agreement between the linguistically controlled parameter set Auto-

FujiPos,Man and the automatically estimated parameter sets we aligned accent and phrase com-
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Figure 1 - Histograms of the frequency (in percent) and amount of deviation (in semitones) from the

167,039 reference F0 values.

mands from AutoFujiPos,Man with those produced by the other algorithms. To that end, accent

commands that overlapped with accent commands from AutoFujiPos,Man, as well as phrase

commands within a region of ±300 ms of a phrase command from AutoFujiPos,Man were

classified as matching ones. Table 1 displays the results. It lists the total number of accent

commands, the percentages of accent commands in the result from AutoFujiPos,Man aligned

with accent commands calculated by the other approaches, the amount of overlap between

commands for those cases in ms and the correlation between the values of accent command

amplitude Aa for these accent commands. In the lower half, the table displays the total num-

ber of phrase commands, percentages of matching phrase commands, mean phrase command
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AutoFujiPos,Man AutoFujiPos Kruschke Schwarz Pfitzinger

Total number accent cmd. 3100 3386 4172 3201 1934

Aligned accent commands – 97.3% 92.0% 78.0% 49.2%

Overlap (ms), mean/s.d. – 232/136 198/110 211/136 158/89

rho(Aa) – 0.944 0.803 0.527 0.857

Total number phrase cmd. 1227 1273 1332 1640 924

Aligned phrase commands – 91.2% 51.3% 63.2% 45.8%

Distance (ms), mean/s.d. – 92/74 139/87 132/84 144/86

rho(Ap) – 0.932 0.608 0.348 0.874

Table 1 - Results of alignment between the parameter sets from AutoFujiPos,Man and those from the

automatic algorithms AutoFujiPos, Kruschke, Pfitzinger, and Schwarz.

distances from the AutoFujiPos,Man reference as well as the correlation of phrase command

amplitudes Ap. Since AutoFujiPos,Man was produced by manually editing the results from Aut-

oFujiPos the match is the best for AutoFujiPos. Kruschke generally produces a high frequency

of commands and therefore 92% of accent commands in AutoFujiPos,Man find a correspon-

dence in Kruschke, whereas the amount of overlap is the largest in relationship with Schwarz.

Matching accent commands from Pfitzinger yield the highest correlation as to their amplitudes.

In the case of phrase commands the percentages of matches are considerably lower than for

accent commands. Kruschke, Pfitzinger and Schwarz yield comparable mean distances. With

respect to phrase command amplitudes Pfitzinger yields the highest correlation.

5.2 Command rates

Fig. 2 explains the overall poor performance of Pfitzinger: Accent and phrase command rates

are generally too low compared with the other approaches. Furthermore, the variance of the

accent command rate is too high which indicates that the command estimation method is not

robust enough. The algorithm assigns too few commands as it ignores f0 peaks with accent

amplitudes less than 0.2, which corresponds to 3.1 semitones according to

st = Aa(12 · γ · log2 e).
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Figure 2 - Accent and phrase command rates.
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Figure 3 - Accent and phrase command amplitudes.

Lowering this threshold to 0.1, which amounts to 1.6 semitones and is, according to Isačenko

& Schädlich 1964 [5], still sufficient to yield a perceivable prominence of a syllable, would

significantly increase the number of commands. This consideration is confirmed by comparison

with AutoFujiPos,Man and would yield a better F0 contour modelling.

5.3 Command amplitudes

The distribution of phrase command amplitudes shown in Fig. 3 suggests that Schwarz requires

a high phrase command rate due to limiting the maximum phrase command amplitude to 1.0.

Besides, the cluster above 0.8 in the accent command amplitude distribution might indicate

accent commands that are actually utilized for supporting the modelling of the phrasal contour.

In contrast to the other methods Kruschke frequently produces phrase commands with very low

amplitudes below 0.2 as well as very high amplitudes above 3.
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Figure 4 - Accent command durations.
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Figure 5 - Deviation in semitones between modelled F0 and reference F0. 50%, 90%, 99%, and 99.9%

of all the data are below the F0 thresholds shown in the bars, respectively.

5.4 Accent command durations

Fig. 4 shows histograms of the accent command durations of four Fujisaki-model extractors.

While AutoFujiPos,Man mainly produces accent commands with a duration of approx. 200 ms,

which can be regarded as the reference, and a relatively small standard deviation, the other three

extractors show larger standard deviations and significantly longer or shorter mean command

durations with Kruschke being the closest to the reference data.

5.5 Overall error distribution

Finally, Fig. 5 presents a more condensed way of looking at the total error distributions by

displaying error thresholds for 50, 90, 99 and 99.9% of the data, respectively. For example, it

shows that 90% of the deviations of three Fujisaki-model extractors are below 2.5 semitones.

0.1% means that deviations are greater than 7.5 to 10 semitones only for 167 F0 values.

6 Discussion

In order to interpret our results we have to bear in mind that the number of accent and phrase

commands as well as variability of the (theoretical) model constants Fb, α , and β have a di-

rect influence on the accuracy of approximation. The more commands are employed, the better

the fitting of an observed F0 contour becomes. As a consequence, however, the resulting pa-

rameters will become more and more difficult to interpret, since they will ultimately model

micro-prosodic fluctuations and not accented syllables or phrasal declination. Hence, moving

from the automatic to the manually post-processed version of Mixdorff, the fitting accuracy

decreases, because only those commands remain that can be motivated by accented syllables

and prosodic phrase onsets. As an additional restriction, the manually post-processed version

employs constant Fb, α , and β for one and the same speaker, whereas Fb is adjusted in the

method of Schwarz depending on the particular sentence. In Kruschke’s algorithm, besides Fb,
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also α and β are varied for each command and therefore lead to a smaller error. Since, how-

ever, Fb, Ap, and α , as well as Aa and β are related through the model formulation, Ap and Aa

become more difficult to compare when Fb, α , and β are treated as variables. The following

table summarizes the main properties of the four extractors:

Fujisaki-model mean command rates ±std-dev. model parameters RMS algorithmic

extractor accents/s phrases/s Fb α , β error complexity

Pfitzinger 0.66 ±0.134 0.32 ±0.035 const. const. 1.99 low

Schwarz 1.10 ±0.097 0.56 ±0.048 var. const. 1.61 very high

Kruschke 1.43 ±0.097 0.46 ±0.039 var. var. 1.23 very high

AutoFujiPos,Man 1.06 ±0.084 0.42 ±0.049 const. const. 1.48 high

With respect to the evaluation of the approaches compared we are aware that objective dif-

ferences such as RMSE cannot replace psycho-acoustic experiments regarding either the per-

ceptual or — as a somewhat relaxed criterion — functional-semantic equivalence of original,

stylised, and modeled F0 contours, an argument already raised by Möbius 1993 [11, p. 116].

7 Conclusion and future research

The best way of ensuring that the Fujisaki-model parameters reflect the underlying linguistic

units and structures of an utterance would be by introducing such knowledge already at the

stage of parameter extraction.

Applying these restrictions, as can be seen when comparing AutoFujiPos,Man and AutoFujiPos

in Fig. 5, might lead to poorer approximations. However, from the stand-point of intonation

research we are not so much interested in just noticeable differences between F0 contours,

but rather in the functional differences. Therefore, the ultimate goal should not be the closest

approximation to automatically extracted F0 values, which by nature is an unreliable reference,

but rather the derivation of an interpretable set of parameters that can be related to the meaning

conveyed by an utterance.

Future work will concern perceptual evaluations of the contours generated for the current study,

as well as efforts towards the integration of linguistic knowledge into the model parameter

estimation procedure properly.
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[11] MÖBIUS, B.: Ein quantitatives Modell der deutschen Intonation: Analyse und Synthese von

Grundfrequenzverläufen. Niemeyer, Tübingen, 1993.
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