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Abstract: Microphone arrays in combination with a suitable beamforming algo-

rithm provide means to spatially filter signals from a given sound field. One very

general beamforming approach is the method of Modal Subspace Decomposition

(MSD) which regards the array and the beamformer as an operator applied to a

coefficient vector. Based on this operator, an eigenvalue problem is considered the

solution of which yields a set of eigen-beampatterns which serve as a basis for the

series expansion of the desired beampattern (directivity). From the series expansion

coefficients, the optimum filter coefficients for the beamformer filters are calcula-

ted. In an earlier work, an extension to MSD was presented which uses a certain

class of IIR filters instead of FIR filters, thus making the algorithm superdirecti-

ve. Hence, even with very compact arrays of arbitrary geometry, it is possible to

achieve directivity at low frequencies where the wavelength is large in comparison

to the array size. In this contribution, the underlying theory of this approach is out-

lined and measurement results obtained from a real-time implementation in a real

acoustic environment are discussed.

1 Introduction

The underlying concept of modal subspace decomposition beamforming (MSD) is based on a

filter-and-sum beamformer. In its original form, the beampattern B (directivity) is established

by weighting and summing a given number of sound field samples taken at unique positions in

space and relative time [1]. All weighting coefficients are arranged into a coefficient vector b and

the connection between coefficient vector and beampattern is established by an operator Â. A

given desired beampattern can be approximated by a linear combination of the so-called eigen-

beampatterns of the beamformer, which are eigenfunctions of ÂÂ†. The spatial arrangement of

the microphones is arbitrary; also, two- and three-dimensional array geometries are covered as

well. This general approach also includes the FIR-filter-and-sum beamformer, which is obtained

by taking M samples per microphone, each delayed by a time interval ∆t = m · TS with

m = 0, . . . ,M − 1. The discrete-time digital weighting filter of each microphone is then an

FIR filter of (M−1)th order operating at sample rate fS = 1/TS . However, in spite of its above

versatility and flexibility, this approach fails to achieve directivity with compact sensor arrays

at low frequencies [2]. Raising the filter order improves the behaviour, yet mainly the numeric

expense is increased while true superdirectivity is far from being obtained. Thus, an extension

of the known MSD algorithm has been developed which successfully combines superdirectivity

and the versatile operator approach [2].

2 Superdirective MSD Beamforming

Let us consider a filter-and-sum beamformer having N sensors located at the positions rn (n =
0, . . . , N − 1). The microphones are weighted through individual weighting filters described by
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complex-valued transfer functions Hn(ω) depending on the frequency f (with ω = 2πf ). We

now assume that the sound field consists of planar waves having the wave vectors k ∈ K, with

K ⊂ K being the considered finite range from the wave number vector space K. Given a source

amplitude distribution S(k), the sound pressure at the location r and time t can be written as

p(r, t) =

∫∫

K

S(k) · ei(ω(k)t−k·r) d2k,

where ω(k) = kc with k := ‖k‖ and c being the sound velocity. The output signal y(t) of the

filter-and-sum beamformer can now be expressed as

y(t) =

∫∫

K

N−1
∑

n=0

S(k) · Hn(ω(k)) · ei(ω(k)t−k·r
n
) d2k

=

∫∫

K

S(k) · B(k) · eiω(k)t d2k,

where

B(k) =
N−1
∑

n=0

Hn(kc) · e−ik·r
n (1)

is the so-called beampattern function describing the beamformer sensitivity as a function of

angle and frequency. The above expressions consider the case of two spatial dimensions (2-D).

The extension to three spatial dimensions (3-D) can be done by simply changing all double

integrals to triple ones (
∫∫

. . . d2k →
∫∫∫

. . . d3k).

We will now introduce the explicit form of the weighting filters through which superdirecti-

vity is achieved. In the original MSD approach [1], the weighting filters (in case of fixed sensor

positions) have the form

Hn(ω) =
M−1
∑

m=0

hn,m · e−iω∆tn,m ,

which are digital FIR filters for ∆tn,m = m · TS as stated above. The beamforming algorithm

then calculates the coefficients hn,m, thus creating an optimal linear combination of the indi-

vidual microphone signals and their delayed versions, which approximates the given desired

beampattern Bdesired(k) in an optimal way [1]. However, in order to achieve superdirectivity,

we choose a fundamentally different form for the weighting filters, motivated by the following

considerations:

1. The superdirectivity we aim for is an intrinsic property of multipole arrays and differential

arrays [3, 4]. Their approximately frequency-invariant behaviour at low frequencies f (i.e.

for f → 0) is achieved through a magnitude compensation by means of time-integration

filters: For a multipole of µ-th order, a µ-fold integration must be applied [3].

2. Combining a set of multipoles of different orders that share a common set of microphones

eventually results in a mixture or linear combination of multiple integrated versions (of

different integration order) of each microphone signal.

3. Maximum flexibility of the beamformer can be achieved by introducing individual co-

efficients for all integration orders of each microphone signal separately (in contrast to

multipole beamforming where fixed linear combinations of sensors are used [3]).
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The above points lead to the following weighting filter functions where integration over time

expressed by the integration filter function 1/iω is used instead of time delay:

Hn(ω) =
L−1
∑

l=0

jn,l ·
(ac

iω

)l

. (2)

Here, L−1 is the maximum integration order; the coefficients jn,l describe the weighting of the

l-fold integrated version of the signal from the nth microphone (with n = 0, . . . , N − 1 and

l = 0, . . . , L − 1). a is a geometry factor having the unit m−1 which is introduced in order to

make the term (ac/iω) dimensionless. With (2) and ω = kc, the beampattern (1) takes the form

B(k) =
N−1
∑

n=0

L−1
∑

l=0

jn,l ·
( a

ik

)l

· e−ik·r
n , (3)

comprising V = NL summands in total. We now define the following vectors of length V :

w = (w0, . . . , wV −1)
T ,

Â(k) = (A0(k), . . . , AV −1(k)) (4)

with T denoting the transpose, having the vector elements

wν=nL+l = jn,l,

Aν=nL+l(k) =
( a

ik

)l

· e−ik·r
n . (5)

These definitions allow us to rewrite the beampattern (3) in the more compact form

B(k) =
V −1
∑

ν=0

Aν(k) · wν = Â w. (6)

The beampattern shape is entirely controlled by the coefficient vector w. The vector Â is called

the beamforming operator because it maps the coefficient vector w to the beampattern B. Fig. 1

shows the signal flow diagram of the so-defined beamformer.

2.1 Matrix Elements and Eigen-Beampatterns

The MSD method uses an eigenvalue problem to obtain the filter coefficients wν . We consider

the V -dimensional complex vector space V = C
V which is spanned by all possible coefficient

vectors. Similarly, we define F as the function space of all beampatterns B(k). It consists of two

subspaces: If we define B := {B | ∃b ∈ V : Âb ≡ B} as the function space of all beampatterns

that can be achieved or created according to (6), and B := {B | Âb 6≡ B ∀b ∈ V} as the

function space of those which cannot, then we can write F = B ∪ B. The operator Â can now

be regarded as a linear map Â : V → F mapping each vector w ∈ V to a beampattern B ∈ B.

For w, w′ ∈ V and B, B′ ∈ F, we define the inner products

〈w|w′〉
V

=
V −1
∑

ν=0

wν · w
′
ν

∗
, (7)

〈B(k)|B′(k)〉
F

=

∫∫

K

B(k) · B′∗(k) d2k (8)

176



òdt
ac

Gp t( , )r0

p t( , )r1

p t( , )rN-1

y

GG G

GG G

GG G

w0 w1 w2 wL-1

wL wL+1 wL+2 w2 -1L

w(N )L-1 w( -1) +1N L w (N )L-1 +2 wNL-1

Figure 1 - Signal flow diagram of the proposed beamformer. Each of the N sensor signals is integrated

0 to L − 1 times by means of the filters G(ω) = ac/iω.

where ∗ denotes the complex conjugate. Now, an adjoint operator Â† : F → V can be found that

maps a beampattern B to a vector w = Â†B and satisfies the relation 〈Â†B|w′〉
V

= 〈B|Âw′〉
F

for any B ∈ F and any w′ ∈ V [2]. Its explicit form can be derived from said relation using the

definitions (7) and (8). One obtains

Â† =















∫∫

K

d2k A∗
0(k) · �

...
∫∫

K

d2k A∗
V −1(k) · �















, (9)

where the placeholders � indicate that the integrands of
∫∫

K
d2k must contain the respective

operand which is multiplied from the right side. Now we consider Z = Â†Â. From (4) and

(9), it follows that Z is a V × V matrix having the matrix elements Zνν′ =
∫∫

K
A∗

ν · Aν′ d2k
(with ν, ν ′ = 0 . . . V −1). For evaluation of the matrix elements, the integration interval K must

be defined. Since waves from all directions must be considered, it is reasonable to allow wave

vectors k of all angles, with the wave number k = ‖k‖ inside a given range: k ∈ [k1; k2 ].
Thus, K is a ring-shaped area around the origin of K in the 2-D case, and a spherical shell

in the 3-D case, in each case bounded by the inner radius k1 and the outer radius k2. The

matrix elements can now be evaluated by explicit angular integration in polar coordinates and

spherical coordinates respectively: For 2-D, one obtains (with n, n′ = 0, . . . , N − 1 and l, l′ =
0, . . . , L − 1)

Z2-D
ν=nL+l, ν′=n′L+l′ = 2π(−1)l

∫ k2

k1

( a

ik

)l+l′

J0(k‖rn − rn′‖) k dk, (10)

where J0(x) is the 0th-order Bessel function of the first kind. For 3-D, the matrix elements

evaluate to

Z3-D
ν=nL+l, ν′=n′L+l′ = 4π(−1)l

∫ k2

k1

( a

ik

)l+l′

si(k‖rn − rn′‖) k2 dk, (11)
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si(x) = sin(x)/x being the unnormalized sinc function [2]. It can be seen from (10) and (11)

that Z is self-adjoint, i.e. Zνν′ = Z∗
ν′ν . Thus, its eigenvalues λν are real and its normalized

eigenvectors uν form a complete orthonormal base of V, such that 〈uν |uν′〉V = δνν′ holds

(δ denoting the Kronecker delta). Further, the functions Uν(k) = Âuν/
√

λν are eigenfunctions

of the operator ÂÂ† (i.e. ÂÂ†Uν = λνUν) and form an orthonormal base of B, satisfying

the orthogonality relation 〈Uν |Uν′〉
F

= δνν′ . They are also called eigen-beampatterns and are

orthogonal with respect to the given wave number interval [k1; k2 ] which corresponds to a

frequency interval [f1; f2 ] with f1,2 = k1,2 · c/2π. This interval is the design frequency band for

which the set of eigen-beampatterns is valid.

2.2 Algorithm

A given desired beam pattern Bdesired can now be projected to B and be approximated by a

linear combination of the eigen-beampattern:

Bapprox(k) = Â b ,

b =
V −1
∑

ν=0

1√
λν

· 〈Bdesired(k)|Uν(k)〉
F
· uν . (12)

Bapprox is an approximation if Bdesired ∈ B. Otherwise (Bdesired ∈ B), it holds that Bapprox ≡
Bdesired. In the first case, the approximation is optimal in the sense that the mean square error is

minimal. The beamforming algorithm can be summarized as follows:

1. For a given number N of sensors at the locations rn, calculate the matrix elements accor-

ding to (10) or (11). The value of a must be decided beforehand.

2. Calculate the normalized eigenvectors uν and eigenvalues λν of Z and evaluate all eigen-

beampatterns Uν(k).

3. Given a desired beampattern Bdesired, calculate the coefficient vector b according to (12).

Steps 1. and 2. are numerically expensive, but have to be carried out only once. Only step 3.

needs to be repeated when the desired beampattern is changed. In step 2., one should confirm

that the eigen-beampatterns actually satisfy the orthogonality relation 〈Uν |Uν′〉
F

= δνν′ with the

deployed numerical approximation of the integral over K. Any eigen-beampattern violating this

relation should be excluded from the series expansion (i.e. from the sum in (12)). Typically, this

can be the case for some of the eigen-beampatterns corresponding to the smallest eigenvalues.

Whether or not eigen-beampatterns are excluded also affects the choice of a: It can be shown

analytically that the value of a is arbitrary and does not influence the resulting beam pattern

Bapprox iff all eigen-beampatterns can be used. This is because the beamformer then targets the

entire function space B. Otherwise, only a subspace of B is covered which depends on the

choice of a. In this case, a does have an effect on the beampattern obtained.

2.3 Multi-Band Design for Broadband Beamforming

The fact that the eigen-beampatterns of the beamformer are calculated for a given design band

[f1; f2 ] is an interesting property of the MSD algorithm, because the coefficients obtained are

thus optimized for that frequency range. This property can be advantageous in broadband be-

amforming: Let us assume that the desired bandwidth is very large and the design band [f1; f2 ]
is chosen such that it covers it completely. It may now happen that the eigen-beampatterns cal-

culated with respect to this band are not flexible enough to provide a satisfactory realization of
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Figure 2 - Measurement setup with seven-sensor hexagonal microphone array and four sound sources

at 0◦, ±90◦ and 180◦; (a) scheme (not to scale), (b) actual setup. The radius of the array is r = 3 cm,

the distance between the sound sources and the array center is d ≈ 75 cm.

the desired beam pattern. In such a case, one may split the desired bandwidth into two or more

subbands and use multiple beamformers, one for each band, and merge their output signals into

one using suitable bandpass filters.

2.4 Scaling Property

Another interesting property of the beamforming operator (4) arises due to the geometry factor

a: Imagine we have a coefficient vector b creating the beampattern B = Â b with sensors at the

positions rn and Â using a geometry factor a having a given value (see eq. (5)). It is now easy

to show that for the beampattern B′ of an array enlarged by a factor ρ ∈ R
+, having its sensors

at the positions r′n = ρ · rn, it holds that B′(k) ≡ B(ρ · k) if B′ = Â′ b with the operator Â′

using the geometry factor a′ = a/ρ instead of a. This means that enlarging the array by a factor

ρ results in scaling its beampattern by a factor 1/ρ along the frequency axis if the beamforming

operator is adapted accordingly and the same coefficient vector is used. It can also be shown

that for a desired beampattern B′
desired(k) ≡ Bdesired(ρ · k) the same coefficients b are found if

the design frequency band is scaled as well ( [f ′
1; f

′
2 ] = [f1/ρ; f2/ρ ]).

3 Beamformer Implementation & Example Measurements

In order to implement the integration over time directly through the factor 1/iω, and in order to

avoid complex-valued signal processing in time domain, a frequency-domain implementation

was chosen for the beamformer. Also, as the algorithm purely relies on phase information and

assumes input signals of identical level (using e−ik·r terms for plane waves), an FFT equalizer

was added to each input channel in order to compensate the individual characteristics of the

microphones which can be run in adaptive or static mode (keeping the magnitude corrections

learned previously in adaptive mode). The example array geometry chosen comprises seven

sensors (N = 7) in a hexagonal alignment with one center sensor (fig. 2(a)). The maximum

integration order used was 3 (i.e. L = 4). The setup was realized with an array diameter of

6 cm, using microphones of type Beyerdynamic MCE 60 (diameter: ≈ 7 mm). The array was

exposed to sound fields generated by four louspeakers of type GENELEC 8080A (fig. 2(b)). By
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Figure 3 - Angular response of the example microphone array over 360◦ for the given desired beampat-

tern (see text); (a) theoretical curves, (b) measured curves averaged over frequency bands 300 Hz wide.

The indicated frequency values are the band center frequencies.

applying white noise from only one loadspeaker and rotating the array in 5◦ steps, the frequen-

cy response at each angle was measured; experiments to distinguish male and female speech

played from two or four loudspeakers simultaneously were made as well. The desired beam-

pattern used for the beamformer design was of frequency-invariant, triangular shape being 1 at

0◦, decreasing linearly to zero on both sides of 0◦, reaching zero at ±79◦ and remaining zero

for larger angles. Two beamformer designs were tested: (A) a single-band design integrating

over the band [25 Hz; 4 kHz ], (B) a multi-band design using the three bands [25 Hz; 2 kHz ],
[2 kHz; 4 kHz ] and [4 kHz; 6 kHz ]. Design (B) almost fully exploits the bandwidth which can

be used with the given geometry without aliasing effects growing too strong.

Fig. 3 shows the beampattern of the beamformer in case of design (A). The spectral data gathe-

red by rotating the array was averaged over bands 300 Hz wide. It can be seen that the theoretical

behaviour is matched very well with the exception of the band centered at 250 Hz. This is ve-

ry likely due to the behaviour of the measurement chamber which exhibits resonances around

100 Hz. Fig. 4 compares the theoretical and the measured frequency response of the beamformer

at selected angles (0◦, ±90◦, 180◦) for both design (A) and (B). The theoretical plots ((a)+(c))

were obtained by simulating ideal free-field conditions using fractional delay filters (FD-filters,

[5]) and applying white noise. They exactly match the results obtained by direct evaluation of

the algorithm in MATLAB, confirming that the beamformer implementation works properly.

Hence, the differences between simulated and measured frequency responses must be caused

by the physical measurement conditions such as room resonances, microphone alignment de-

viations, finite microphone size etc. Further, in both designs (A) and (B), it turned out that

a couple of eigen-beampatterns with the smallest eigenvalues – though being orthogonal (see

section 2.2) – may corrupt the beamformer behaviour. Thus, for (A) the first five, for (B) the

first ten eigen-beampatterns (out of a total of NL = 28) had to be excluded.

4 Summary

A beamforming algorithm is proposed that achieves directivity down to very low frequencies

and works for arbitrary array geometries. The superdirectivity is achieved by time-integration
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Figure 4 - Magnitude of the beamformer frequency response in selected directions (0◦, ±90◦ and 180◦);

(a)+(b) single-band design, (c)+(d) three-band design; (a)+(c) theoretical curves (from simulation, see

text), (b)+(d) measured curves.

filtering in analogy to multipole beamforming. Though the experiment setup to some extent

compromises the shown measurement results (especially at low frequencies), it is shown that

the algorithm itself is effective. Also, multi-band design can be used successfully to broaden the

beamforming bandwidth.
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