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Abstract: In this paper we estimate the information contained in features to recognize phones 

represented by HMMs states. The features investigated are derivatives of MFCCs. The 

information is defined as the ‘Phone Entropy’, which is Shannon’s conditional entropy 

applied to phones. Related to the entropy are the bounds concerning the minimum phone error 

rate, which are achieved by a recognizer based on the Bayes principle. We use the Fano and 

Golić bounds as the lower and upper bounds, respectively. This paper is focused on 

estimating the Phone Entropy and the underlying probability functions. An approach to 

overcome the first order Markov model, as used in the state of the art HMM technology, is 

investigated. Experimental results are presented using the AURORA framework, where we 

determine the Phone Entropy and phone error rates for different noise levels.  Phone error 

rates are compared to the bounds given by Fano and Golić. 

1 Introduction 

Research in speech recognition is focused on the reduction of word error rates. Improvements 

are achieved by using new features or using better statistical models.  In this paper we regard 

features derived from the mel-frequency cepstral coefficients (MFCCs). For estimating the 

information contained in the features we use Shannon’s conditional entropy H(Q|X) [1], 

where X denotes the features and Q the units to be recognized. H(Q|X) determines the number 

of bits needed to decode the units Q without error, i.e., if the condition H(Q|X) = 0 holds, the 

units Q can be recognized without errors. For H(Q|X) > 0 there exists a lower bound - the 

Fano bound [2] -  for the minimal error rate achievable. The Fano bound is a function of 

H(Q|X). This paper is focused on the estimation of H(Q|X) for different speech corpora which 

have  different noise levels. As units Q we use ‘phones’ modelled by the HMMs states.  

The paper is organized as follows. Chapter 2 provides the statistical framework to relate error 

rates to H(Q|X). Chapter 3 is devoted to provide methods to estimate H(Q|X). Finally we 

present experimental results using the AURORA framework ([9], [10]).  

2 The Statistical Framework 

According to the theory of pattern recognition [8], the Bayes classifier achieves minimum 

error rates. Given an uttered sequence W
�

 of words, and given a sequence of feature vectors 

),...,( 1 tt XXX =
�

the Bayes estimate for W
�

is given by 

)1.2().()|(maxarg)|(maxarg WPWXpXWpW tWtW
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The minimum error rate can be achieved only if )(WP
�

- the language model - and )|( WXp
��

  -

the acoustic model are known. The main obstacle to estimate the entropy H(W
�

| X
�

) is the 

high and variable dimensionality of the acoustic model )|( WXp
��

. In HMM technology each 

word W is modelled by a sequence of states WQ
�

and the acoustic model for )|( WXp
��

is given 

by a state model )|(
W

QXp �

��
 based on a first order Markov process [7]. Using (2.1) the 

recognition of words is transformed to the recognition of a sequence of states given by
1

 

                                                 
1
 In the following we denote by )(~ Zp an approximation of the real distribution p(Z) for any variable Z. 
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(2.3) defines a search task where an optimal alignment function j(m) has to be found, which 

assigns each frame m to a state )(mjQ , which maximizes the probability )(
~

)|(~
WW

QPQXp ��

���
. 

aj(m-1),j(m) denote the transition probabilities, which allow only the transitions on states 

compatible with the word specific sequences WQ
�

. The optimal alignment j(m) assigns each 

feature vector Xm to a state Qj(m)  defining a segmentation SX=(Xm, Qj(m))m=1,...,t . Furthermore, 

this segmentation defines a state sequence TnnjW Q
QQ ,1)( )( =≡�

�
given by the state assignment 

function jQ(n). We transform the segmentation SX into a segmentation SQ  

,),( ,1)( TnnjlQ QXS
n =≡

�
     (2.4) 

where 1,..., −+=
nnn lmnml XXX

�
denotes a sequence of feature vectors belonging to the same state 

)(njQ
Q . This segmentation can be improved further using a forced Viterbi algorithm, where the 

sequence of states is known. Using the improved segmentation SQ we can define the phone 

recognition task, where the functions j(m) and jQ(m) are fixed, but the phones )(njQ
Q ,n=1,...,T 

have to be recognized
2
: 
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The approximation made in (2.5) assumes that both, the feature vectors assigned to different 

phones and the phones themselves are statistically independent. We call the 

functions )|( jll QXp
�

 the ‘extended emission probabilities’ (EEPs). They model the statistical 

dependencies of all feature vectors assigned to a phone; thus we have to model EEPs for 

different values of  l. This is in contrast to the HMM approach given by (2.3), where all 

feature vectors are regarded as statistically independent (case l=1). (2.5) defines a phone 

recognition task with the maximum a posteriori solution 

TnNjQPSQXpXQ Qjjlljl nnn
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~
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where NQ denotes the number of phones.  Given the following probabilities
3
:  

LlQXpQPXpQXXpQXp
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where L =max (l), the following entropies dependent on l can be defined:   
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Given the entropies defined in (2.7) we define the Phone Entropy PE(X)  

                                                 
2
 It is well known in speech recognition technology, that the optimal sequence of states does not represent 

sequences corresponding to words. 

3
 In the following we do not distinguish between P(Qj) and )(

~
jQP , because these values can be conveniently 

estimated.  
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Thus PE(X) is determined [3] by H(Q) and the mutual information );( QXI
�

. H(Q) is the 

number of bits needed to recognize the phones. );( QXI
�

 is the number of bits extracted from 

the feature vectors X.  Consequently, PE(X) represents the missing information measured in 

bits to recognize the phones without errors )0)(( ≥XPE . Missing information leads to errors. 

The minimal achievable phone error rate is bounded by the Fano and the Golić bounds. These 

bounds are a function of PE(X) (see Section 6.1). The bounds together with the experimental 

measured values of PE(X) and the related phone error rates are presented in Section 4.3.  

3 Mutual Information of Features 

In this chapter we aim to estimate );( QXI
�

 as needed to evaluate the Phone Entropy (2.8). 

The main issue is to develop a model for the extended emission probabilities (EEPs) as 

defined in (2.6). This model depends on the statistical properties of the features used.  

State of the art recognizers generally use MFCCs features [20], which are processed further to 

increase the temporal context [15] and to remove long term statistical dependencies, which 

are not modelled by the first order Markov assumption. Channel compensation [14], vocal 

tract length normalization [13], and noise reduction [16] are typical methods to remove the 

long term statistical dependencies. The increase of temporal context results in a higher feature 

vector dimension. This dimension is decreased by using a linear discriminative analysis LDA 

[11]. The LDA plays an important role on the statistical properties of the EEPs (2.6), because 

it de-correlates the components xk of a feature vector X=(x1,...,xd)
T 

and equalizes the variances 

of the components [6].  

The information contained in the feature vectors depends on the quality of the speech 

recorded. In Chapter 4 we regard speech, which is distorted by environmental noise. These 

environmental distortions influence the phone error rates and the Phone Entropy.    

In order to achieve some analytical solutions, we assume that the feature components xk,j , 

k=1,...,d of the d-dimensional feature vector Xj assigned to a phone Qj are statistically 

independent with respect to k and Gaussian distributed. Furthermore, we assume that the 

components nlm

jk

m

jk xx
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driven by a Gaussian process q

jk ,ξ with the distribution ),0,(
2

,, jkjkN σξ . Whenever a feature 

vector ‘jumps’ into a new state, the ARMA process starts with a value 1

, jkξ of the random 

variable ζk,,j. For each l the distribution of the EEPs is given by 
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  (3.2) 

The entropy of this Gaussian ARMA process is given by [3] 
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The coefficients i

jka , can be determined by the Durbin-Levinson Algorithm [3] using the 

autocorrelation function φk,j(xk,|Qj). Furthermore, gj,k(ω) is given by the Fourier transform of 

φk,j(xk,|Qj).  In the following two sections we investigate the case l=1 and l=2, which allows to 

estimate the Phone Entropy PE(X) for L<3 (L=max(l); see Table 4.1). 

3.1 Case l=1 

This case is described in [6] in more detail. As the statistics of the feature vector X are 

modelled by the EEPs with l=1, p1(x1,k |Qj) is equivalent to the emission probabilities p(xk|Qj) 

used in HMM technology (see (3.2)) 

T
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leading to the entropy 
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Using (2.6) and (3.4) we can determine H1(X) 
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In [6] several methods have been investigated to estimate H1(X). If we assume )(1 Xp is 

approximated by a monomodal Gaussian distribution with variances and means as given by 

the multimodal distribution (see (3.6)), we get for the mutual information the following nice 

formulation: 
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where the index M denotes a monomodal approximation. This approximation shows that the 

mutual information depends on the variances and means of the related distributions. Based on 

the distributions p1(X|Qj) (3.4) and p1(X) (3.6), alternatively, the entropies H1(X) and H1(X|Q) 

can be estimated by the Monte Carlo method as described in the Appendix. 

3.2 Case l=2 

According to (3.2) we have to treat the distributions 
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which are approximated by using the properties of the ARMA process defined by (3.1) 
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Given the distributions derived in (3.8) and the result in (3.5) we get 
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In the case, where the feature vectors X are statistically independent, the entropy adds equally 

with the value H1(X|Qj) for each frame, whereas for a second order ARMA process, the 

entropy is reduced depending on the parameters jka , . If these parameters are 0 (no 

correlation), there is no loss in entropy. If the parameters approach 1 the entropy goes to ∞− . 

4 Experiments 

In this chapter we investigate the Phone Entropy and error rates for phones represented by the 

states of whole word HMM models from the German digits having NQ = 264 phones.  As 

speech corpus we use the AURORA-3 German digits database [10], which is a subset of the 

German SpeechDat-Car (SDC) database containing digits utterances [17]. The dataset used 

has a total number t = 407 978 feature vectors (without pauses).  

4.1 Environmental Distortions 

The utterances were recorded under different noise conditions. For each utterance an SNR 

value was assigned using the method described in [18]. This method measures the SNR values 

separately for each mel-filterbank channel summing up to a value of SNRmel for each 

utterance. According to the noise level, the utterances are clustered into different datasets 

covering a range of SNRmel values (see Table 4.2).  

4.2 Analysis of ARMA Processes 

Applying the segmentation as given by (2.4) to the AURORA-3 database, we have the 

following distribution of the length l of feature vectors assigned to the same phone:  
 

l 1 2 3 4 5 6 7 

P(l) 0.409 0.128 0.041 0.017 0.008 0.005 0.003 

Table 4.1 – Distribution of P(l). 
 

Table 4.1 shows that 59% of the phones could be handled by an ARMA process with l > 1. 

Furthermore, in Figure 4.1 the normalized autocorrelation coefficients for different 

components xk are shown for those cases, where at least 2 feature vectors are assigned to a 

state. The figure shows that the correlation decreases with increasing index k. This is in 

contrast to the property of the LDA to order the components with increasing index to have 

less discriminative power [6]. 

4.3 Phone Entropy and Phone Error Rates 

In this section we estimate phone entropies as investigated in Chapter 3 for the case l=1, 

which applies for 41% of all the phones observed. As shown in [6] the Phone Entropy PE(X) 

is estimated with the Monte-Carlo method leading to estimates )|(
~

XQH N

MC (see Section 6.2).  
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Figure 4.1 – Coefficients ak,j as defined in (3.8), but averaged over all phones Qj. 

 

 

range of SNRmel )|(
~

XQH N

MC  Phe  [%] 

16-24 dB 3.77 64 

8-16 dB 4.22 71 

0-8 dB 4.85 76 

Table 4.2 – Measured Phone Entropies )|(
~

XQH N

MC and error rates eph. 

 

 

 

Figure 4.2 – Phone error rates Phe  and )|(
~

XQH N

MC related to the upper and lower bounds. 
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Table 4.2 shows the error rate Phe  for l=1 leading to the ‘ASR’ curve shown in Figure 4.2. 

Furthermore, Figure 4.2 shows the relation between both the measured error rates and phone 

entropies and the Fano and Golić bounds. Although the position of the curve denoted by 

‘ASR’ lies between the lower and upper bounds as the theory predicts, yet we do not know 

the precision of the models used to estimate the phone entropy in making the final 

conclusions. 

 

5 Conclusions and Future Work 

To evaluate the information included in the feature vectors we have investigated a phone 

recognition task. We extended the statistical framework of HMMs by modeling the statistical 

dependencies of the feature vectors within a phone using an ARMA approach. Still this 

extension has to be explored experimentally. We defined a Phone Entropy PE(X), which is 

related to the error rates, and compared the measurement of these values with the Fano and 

Golić bounds. Still an open issue is to model the statistical dependencies of feature vectors 

belonging to different phones. 

 

6 Appendix  

6.1 Bounds given by Fano and Golić  

Given the phone error rate Phe  from a maximum a posteriori classifier the Fano bound is 

given by  
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The Golić bound is given by 
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6.2 Monte Carlo Approximation 

Given an estimate )(~ Zp  for a distribution )(Zp  for an arbitrary random variable Z we define 

the approximated entropy 
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X
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Given a set of samples Zm from a speech database, the expectation ))(~( ZpldE −  can be 

approximated by the ‘Monte-Carlo Entropy’ 
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Due to the law of large numbers the relation  

,))))(()(((
2

2

t
ZpHZHE

N

MC

σ
∝−  

holds, i.e., the Monte-Carlo entropy converges to H(Z) for infinite t.  
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