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Abstract: In this paper, investigations regarding the robust classification of
acoustically observable sources (kitchen appliances and speakers) are presented.

Thereby, two deciding factors are considered. On the one hand, the data acquisition
should be exclusively done by the on-board sensors of the robot. On the other side,
the entire information processing must be handled in real time due to the

requirements given by the robot hardware. In so doing, there are positive and

negative characteristics to think about. Since audio data are picked up in a small
room like a kitchen with many sound sources, the background noise and

reverberation of the signals of interest have to be taken into account. The redundancy
of the signals picked up by the microphone array, which is installed on the robot

head, can be employed to improvethe classification accuracy.

The presented system is based on Gaussian Mixture Models in correspondence with

the Mel Frequency Cepstral Coefficients as acoustic signal features. Furthermore, a
Universal Background Modelis used for the special case of speaker identification.

In this work, studies regarding the channel combination, the necessary length of the

training phase, and the minimum data length for the evaluation are presented.

1 Introduction

There are a lot of areas, in which the robust identification of sound sources is required. One of
them is the interaction between man and machine, whichis given in scenarios, where a human

interacts with a machine, for example a humanoid robot. Usually, the entire communication

takes place via speech. In this case, the identification of speaking persons is of peculiar
interest for the robot. But also in situations where no immediate contact between the user and

the machine takes place, many other active sound sources can still exist in the robots
proximity. A common example for this can be a kitchen, which contains different acoustically

observable appliances. The robot ought to know its environmentat any timeto be able to find
its way around. Especially, if handicappedor elderly people are involved, the humanoid robot

has to guarantee the security of these people. Due to the reduced ability to hear, an elderly
person might not register an acoustic event, so that the humanoid robot has to give a hint

concerning it. Thus, the humanoid robot has to compensate the deficiency to hear of the
person, whothe robottakescareof.

Undercontrolled conditions, acoustic classification achieves very high performance. In a case

of cross-validation, a correct recognition rate of 95 percent or even higher is usual. Also the
annual Speaker Recognition Evaluation (SRE) of the National Institute of Standards and
Technology (NIST) shows promising results [1]. However, the acoustic classification in a far-

field scenario is still a great challenge. But exactly this situation occurs when a humanoid

robot should recognize different sound sources in its proximity. In order to improve the
recognition performance, different approaches were investigated for the last years. Some of
them use advantages ofdistributed microphonearrays, as reported in [2]. Another method for
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improving the recognition rate consists in the enhancement of the signal to noise ratio by 

using adaptive or fixed beamforming approaches, as described in [3], or by means of a 

directional microphone. 

However, utilizing both techniques with the on-board sensors, which are placed on the head 

of the humanoid robot, crucial constraints have to be taken into account. For a start, audio 

data should be exclusively acquired by the on-board sensors of the robot and doing so there is 

no possibility to use distributed microphone arrays. Also the application of a beamforming 

approach seems not to be the ideal way. This conclusion results from two facts: at first, 

notable improvements are achieved by utilizing a large microphone array, for example 

consisting of 64 microphones, as reported in [3]. One has to accept, that the usage of such 

huge array is rather unrealistic for a head or even the body of a humanoid robot. But even if 

ignoring this fact, one more constraint has to be considered. At the latest, the computational 

costs of beamforming approaches do not allow their usage on the robot’s hardware. The 

utilization of one or more directional microphone seems also not to be the best solution due to 

the required length of such kind of microphones. 

On account of these considerations, the current paper presents a system for the robust acoustic 

classification of kitchen appliances and speakers, and tries to find an optimum parameter 

setup for its application in real environments, in association with a humanoid robot. 

 

2 Context-independent sound source classification 

Over the past years, the Mel Frequency Cepstral Coefficients (MFCC) have proven to be the 

most appropriate parameters for speaker identification [4], which are also used as basic 

features for speech recognition. In our system we use the MFCCs for both speaker recognition 

and classification of kitchen appliances. The resulting versatility is the convenient advantage 

of this way of proceeding. In so doing, the sound signal is characterized by a 13-dimensional 

MFCC vector every 28ms. The first component of the feature vector reflects the energy of the 

analyzed speech segment and is not used for the classification. In order to exclude segments 

with no information, a sound activity detection based on normalized energy is utilized in the 

baseline system. 

The individual speakers and various kitchen appliances can be distinguished on the basis of 

their specific acoustic features. Therefore an individual statistical model is required for each 

sound source. Over the past decades, Gaussian Mixture Models (GMMs) [5, 6] has become 

the method par excellence for the speaker identification task with text-independent speech 

data. We extended the GM modeling by adding the option for modeling of kitchen appliances 

as well. In order to determine the model parameters of the GMM for each sound source, a 

training phase is required. For this purpose, we drew on the Expectation-Maximization (EM) 

algorithm [7, 6], which has proven to be the most efficient one. The parameters of GMMs are 

determined on the basis of the MFCC feature training vectors by the iterative application of 

the EM algorithm. The general GM modeling supports full covariance matrices. Contrary to 

that, we used diagonal covariance matrices only. For one thing this way of proceeding 

resulted in a higher computational efficiency, for another thing empirical investigations 

showed that diagonal-matrix GMMs normally outperform full matrix GMMs.  

For the special case of speaker classification, the GM modeling can be replaced by a so called 

Universal Background Model (UBM) [8]. Using the UBM technique, the general class of 

speech is modeled by only one GMM for all different speakers. Instead of application of the 

EM algorithm for each speaker, individual speaker models are then derived from the UBM. 

Therefore, a form of Bayesian adaptation in combination with speaker-specific training 

vectors is used. 
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3 Experimental Setup 

For the simplification of co-operation between humans and the robot, the entire 

communication is based on speech. In order to arrange the handling of the robot as flexible as 

possible, the microphones used for the acquisition of acoustic signals are fastened to the 

robot. The microphone array consists of six omni-directional 

condenser lavaliere microphones beyerdynamic MCE 60 

(Figure 1). Two of them are placed on the positions of the 

human’s ears, one on the forehead, one on the chin, and 

finally two further microphones are located on the back of the 

robot’s head. The distance between the two ear microphones 

is 19 cm, between the front and back microphones 23 cm, 

between both front microphones 6 cm, and 4.5 cm between 

both microphones on the back, respectively. 
Figure 1 - Microphone 

beyerdynamic MCE 60 

In order to investigate the accuracy of the system for the robust acoustic classification, a 

sound source database was collected using all six microphones of the robot. We recorded 

speech data from ten speakers and five kitchen appliances with eight acoustically observable 

states in total. Thereby, we used a coffee grinder, a toaster, a bread cutter, a hand-held 

blender, and a household electric coffee machine with four acoustically observable states. 

In order to consider the influence of different environments, real experiments were carried out 

in different test environments, and all recordings were done in two different typical office 

rooms. Each speaker was required to talk about topics of personal interest for about five 

minutes per room. That resulted in spontaneous free speech data of at least four minutes 

duration. Furthermore, all speakers were allowed to move around freely and were not forced 

to look towards the sensor array. 

Analogously, all kitchen appliances were recorded in both rooms. The signal duration was at 

least two minutes for each appliance and each state, respectively. During the recording phase, 

all appliances were moved across the room. 

 

4 Results 

In this section, observational results and cognitions are presented. At this point, the attention 

should be paid again to the fact that our intention entailed in analysis of real sound data in real 

environments. 

In order to evaluate the general system performance, measurements with recorded data from 

the same room (matched room conditions) were completed in the first step. For this purpose, a 

10-fold-cross-validation was applied to the available speech data and a 3-fold-cross-validation 

to the kitchen appliances data, respectively. Due to the fact that the robot does not stay in the 

same room all the time, but navigates between different rooms, all measurements were 

repeated under mismatched room conditions, to wit: training in the first room and testing in 

the second room as well as vice versa. Subsequently, results from both rooms were averaged. 

In the following, for better comparison measurements are given for the cross-validation case 

(CV) as well as for mismatched room conditions (MM). 

Furthermore, all results are presented for different signal acquisition durations, in particular 

for one, two, five, and ten seconds. That means that the classification result is available as 

soon as a sound data block of a specific length is acquired. The system performance is given 

by the classification accuracy, which is the percentage of correctly classified blocks over all 

blocks; the corresponding standard deviation (std) is given as well. 
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4.1 GMM size 

At the first, basic system parameters had to be found. One of them is the number of Gaussians 

in the GM modeling. We evaluated GMMs with 8, 16, and 32 mixtures for both speakers and 

appliances. Additionally, GMMs with 64 mixtures were analyzed for the case of speaker 

classification. 

Table 1 presents the average classification accuracy of the baseline system for both speakers 

and appliances, depending on the number of mixtures (results with the best parameter setup 

are highlighted in bold letters). It shows that accuracies under cross-validation conditions are 

much higher than under mismatched conditions, especially for the case of speaker 

classification. Thereby, the GMM training length was 120 seconds for speakers and 60 

seconds for appliances, respectively. 

As can be seen, the highest accuracy under mismatched conditions is achieved using 16 

mixtures for speakers, and 8 mixtures for appliances. While 16 mixtures seems to be a good 

trade-off for both, restrictions concerning the computation efficiency motivated us to use 

different mixture numbers for speakers and appliances in all further measurements. 

 

 GMM 

block        size 

length 

8 16 32 64 

avg std avg std avg std avg std 

S
p

ea
k

er
s 

(t
ra

in
in

g
: 

1
2
0

 s
) 1s 

CV 0.85  0.08 0.88 0.06 0.89 0.06 0.89 0.06 

MM 0.65 0.17 0.68 0.17 0.68 0.18 0.67 0.20 

2s 
CV 0.93 0.05 0.94 0.04 0.95 0.04 0.95 0.04 

MM 0.73 0.18 0.75 0.18 0.75 0.20 0.74 0.22 

5s 
CV 0.98 0.02 0.98 0.02 0.98 0.02 0.98 0.02 

MM 0.82 0.18 0.85 0.17 0.84 0.19 0.82  0.23 

10s 
CV 0.99  0.01 0.99 0.01 0.99 0.01 0.99 0.01 

MM 0.86 0.19 0.88 0.17 0.86 0.19 0.84 0.24 

A
p

p
li

a
n

ce
s 

(t
ra

in
in

g
: 

6
0

 s
) 1s 

CV 0.95 0.05 0.95 0.05 0.95 0.06 -- -- 

MM 0.92 0.06 0.91 0.07 0.91 0.07 -- -- 

2s 
CV 0.96 0.04 0.97 0.04 0.96 0.05 -- -- 

MM 0.94 0.05 0.94 0.06 0.93 0.06 -- -- 

5s 
CV 0.98 0.04 0.98 0.03 0.98 0.04 -- -- 

MM 0.97 0.03 0.97 0.04 0.96 0.04 -- -- 

10s 
CV 0.98 0.04 0.98 0.02 0.98 0.04 -- -- 

MM 0.99 0.01 0.98 0.02 0.98 0.03 -- -- 

Table 1 – Influence of the GMM size on the classification accuracy 

4.2 Length of the training phase 

As previously mentioned, for determining the model parameters of the GMM for each sound 

source, a training phase is required. That is why we evaluated the influence of the length of 

the training phase on the classification accuracy. Corresponding results are summarized in 

Table 2. As one can see, a much higher training length is required for speaker recognition, in 

comparison to the classification of kitchen appliances. While a training phase of not more 

than 60 seconds for kitchen appliances already leads to a rather high classification accuracy of 

97% under mismatched conditions and a block length of five seconds, 120 seconds are 
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required to achieve an accuracy of 85% using the same block length for the case of speaker 

recognition. 

 

 

training 

block    length 

length 

15 30 60 90 120 180 

avg std avg std avg std avg std avg std avg std 

S
p

ea
k

er
s 

(G
M

M
 s

iz
e:

 1
6
) 1s 

CV 0.73 0.12 0.80  0.10 0.85 0.08 0.86 0.07 0.87  0.07 -- -- 

MM 0.51 0.18 0.59  0.18 0.64 0.18 0.66 0.18 0.67  0.17 0.69 0.18 

2s 
CV 0.82 0.11 0.88  0.08 0.92 0.06 0.93 0.05 0.94  0.04 -- -- 

MM 0.58 0.22 0.67  0.21 0.72 0.20 0.74 0.19 0.75  0.18 0.77 0.18 

5s 
CV 0.89 0.09 0.95  0.06 0.97 0.04 0.98 0.03 0.98  0.02 -- -- 

MM 0.65 0.25 0.75  0.24 0.81 0.20 0.83 0.20 0.85  0.17 0.86 0.17 

10s 
CV 0.92 0.08 0.97  0.03 0.98 0.02 0.99 0.01 0.99  0.01 -- -- 

MM 0.69 0.28 0.79  0.24 0.85 0.20 0.86 0.20 0.88  0.17 0.89 0.16 

A
p

p
li

a
n

ce
s 

(G
M

M
 s

iz
e:

 8
) 1s 

CV 0.92 0.08 0.95  0.06 -- -- -- -- -- -- -- -- 

MM 0.85 0.11 0.88  0.09 0.92 0.06 -- -- -- -- -- -- 

2s 
CV 0.94 0.07 0.96  0.05 -- -- -- -- -- -- -- -- 

MM 0.87 0.10 0.90  0.08 0.94 0.05 -- -- -- -- -- -- 

5s 
CV 0.96 0.05 0.98  0.03 -- -- -- -- -- -- -- -- 

MM 0.90 0.09 0.93  0.07 0.97 0.03 -- -- -- -- -- -- 

10s 
CV 0.96 0.06 0.98  0.03 -- -- -- -- -- -- -- -- 

MM 0.92 0.08 0.95  0.06 0.99 0.01 -- -- -- -- -- -- 

Table 2 – Influence of the training length on the classification accuracy 

4.3 Channel combination 

As was mentioned above, the robot is equipped with a microphone array, which consists of 

six microphones. Our investigations concentrated on the redundancy of the signals picked up 

by the microphone array, with a view to improving the classification accuracy under 

mismatched conditions. For that purpose, we evaluated two different channel combination 

(CC) approaches. 

In the first step, the channel combination was applied during the GMM training phase (CC 

training). That means that an individual model for each sound source was trained using sound 

data from all six microphones. 

Subsequently, the channel combination can also be applied in another way (CC evaluation). 

Thereby, the total classification result is calculated by the logarithmic combination of the 

classification results over the desired block length, each of which is given by the evaluation of 

the trained GMM with sound data from different microphones. At this point, the attention 

should be paid to the fact that the corresponding GMM was trained with the sound data from 

one channel only (microphone on the forehead of the robot’s head). The usage of separate 

GM models for each channel should result in moderate increasing of the classification 

accuracy. 

Table 3 shows the system improvement by utilizing the two channel combination approaches 

under mismatched conditions. While channel combination does not yield much in case of 

appliances due to already good results without channel combination, the speaker classification 

task can mostly benefit from fusion of both channel combination approaches (CC both). For 
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example, a relative improvement of 9% could be achieved for sound data blocks of one 

second length. 

 

 channel 

block    comb. 

length 

CC none CC training CC evaluation CC both 

avg std avg std avg std avg std 

S
p

ea
k

er
s 

1s MM 0.67  0.17 0.70  0.15 0.71  0.17 0.73  0.16 

2s MM 0.75  0.18 0.78  0.16 0.79  0.17 0.81  0.15 

5s MM 0.85  0.17 0.86  0.16 0.86  0.16 0.87  0.16 

10s MM 0.88  0.17 0.90  0.15 0.89  0.15 0.90  0.15 

A
p

p
li

a
n

ce
s 1s MM 0.92  0.06 0.93  0.05 0.91  0.09 0.94  0.06 

2s MM 0.94  0.05 0.96  0.03 0.93  0.09 0.96  0.05 

5s MM 0.97  0.03 0.98  0.02 0.96  0.06 0.98  0.03 

10s MM 0.99  0.01 0.99  0.01 0.97  0.04 0.98  0.02 

Table 3 – Influence of the channel combination (CC) on the classification accuracy 

4.4 UBM for speaker classification 

As described in 2, a Universal Background Model (UBM) can be used for the restricted case 

of the speaker classification. In so doing, we trained a GMM with 64, 128, and 512 Gaussian 

mixtures, using approximately three hours of speech. The corresponding results with 60 

seconds training for individual speaker models are summarized in Table 4. It shows that under 

mismatched conditions, the highest classification accuracy is achieved by using the UBM 

with 512 mixtures. In contrast, already the UBM with 64 mixtures seems to be sufficiently for 

the cross-validation case. 

 

 UBM size 

block  

length 

64 128 512 

avg std avg std avg std 

S
p

ea
k

er
s 

(t
ra

in
in

g
: 

6
0

 s
) 1s 

CV 0.84  0.11 0.84  0.11 0.84  0.12 

MM 0.63  0.16 0.64  0.15 0.66  0.14 

2s 
CV 0.92  0.08 0.92  0.08 0.91 0.09 

MM 0.72  0.18 0.73  0.16 0.75  0.15 

5s 
CV 0.97  0.05 0.97  0.05 0.97  0.05 

MM 0.81  0.18 0.83  0.15 0.85 0.14 

10s 
CV 0.98  0.03 0.98  0.03 0.98  0.03 

MM 0.85  0.20 0.87  0.15 0.90  0.14 

Table 4 – UBM: influence of the GMM size on the classification accuracy 

 

Figure 2 shows the influence of the UBM training length on the classification accuracy under 

mismatched conditions, in comparison to the common GM modeling. It can be clearly seen 

that the UBM approach results in significant increasing classification accuracy for short 

training phases. For 15, 60, and 120 seconds training length and a block length of five 

seconds, the relative improvement amounts 18.5%, 4.9%, and 2.4%, respectively. 
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Figure 2 – In comparison: influence of different training lengths for common GMM and UBM 

 

 

0.5 1 2 5 10
0.5

0.6

0.7

0.8

0.9

1

block length [s]

p
ro

b
a

b
ili

ty

 

 average classification accuracy
 

speakers (CC)

speakers (CC+UBM)

appliances (CC)

0.5 1 2 5 10
0

0.1

0.2

block length [s]

p
ro

b
a

b
ili

ty

 standard deviation

 

Figure 3 – Influence of the channel combination (CC) for common GMM and UBM 
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Finally, we evaluated the combination of the UBM technique with the channel combination 

approach. Figure 3 demonstrates the pleasant enhancement, which could be achieved by 

fusion of both methods under mismatched conditions. On average, a relative improvement of 

4% was gained for blocks with at least two seconds of sound data. By way of comparison, the 

classification accuracy for appliances is given in the same figure. 

 

5 Conclusion 

In this paper, we presented our system for the robust classification of acoustically observable 

sources, both kitchen appliances and speakers. Real experiments were carried out in different 

test environments, and all recordings were done in two different typical office rooms. 

Subsequently, two main cases were differentiated: cross-validation within the same room and 

evaluation under mismatched conditions, to wit training with sound data from the first room 

and evaluation with sound data from the second room. This way of proceeding showed that in 

the cross-validation case classification accuracy is considerable high. Under mismatched 

conditions, the baseline system does not reach adequate results. 

Our investigations pointed out the influence of the GMM size as well as the training length on 

the classification accuracy. In order to enhance the performance of the baseline system, two 

different channel combination techniques were proposed, whereby the combination of both 

approaches yielded. Furthermore, all results were given for different block lengths. 

For the restricted case of the speaker classification, we showed that the UBM technique 

outperforms the common GM modeling, particularly with regard to short training phases. A 

fusion of the UBM approach with the channel combination technique resulted in the even 

higher classification accuracy. 

The significance of different parameter setups for the classification of kitchen appliances and 

speakers was pointed out over the course of our evaluations. 
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