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Abstract: In this paper we describe the speech recognition component of a telephone-
based spoken dialog system that uses HTK-based speech recognizer integrated in a 
VoiceXML framework and an ISDN telephone interface. As the speech recognizer 
component is one of the most decisive components that determine the usefulness and 
user acceptance of a dialog system, we present here strategies on how to build and 
improve the performance of a speech recognition component within such a system. The 
baseline speaker-independent system gives a word error rate (WER) of 13.66% for 
female speakers and 21.55% for male speakers using a 22-hour telephone speech from 
the Communicator 2001 Evaluation corpus. As can be observed, the system appears 
biased towards female speakers. This is attributed to the fact that the number of female 
speakers used in training the models is significantly higher than male speakers (72 vs. 
28). To combat this problem and to improve the performance of the system for male 
speakers, we use two approaches. First, taking the presence of within-gender acoustic 
similarity due to similar vocal mechanism of speakers into consideration, we adapt the 
speaker independent HMMs using adaptation data from each gender. As an alternative, 
separate gender-dependent models are built. We also built a Gaussian Mixture Model 
(GMM) gender classifier that can determine the gender of the speaker given a very short 
utterance (typically a “yes” or a “no”) with 96.62% accuracy. 

1    Introduction 
A telephone-based spoken dialog system is comprised of a telephone network interface to deliver 
calls into the system, a speech recognizer to accept requests from users, a text to speech 
synthesizer (TTS engine) for playing prompts and responses to the caller, a semantic interpreter 
for comprehending requests, a mechanism for response generation, and a dialog manager to 
orchestrate the various components. 
 

The speech recognizer in our dialog system uses HTK [1] to build recognition resources and its 
API (ATK) to build a real-time speech recognizer [2] integrated in a VoiceXML framework. 
Among other features, ATK allows a flexible use of resources during the recognition process. It 
uses a global configuration file where HTK compatible HMM models and other recognition 
resources such as grammar, HMM list, and pronunciation lexicon are specified [2]. This makes it 
possible to use the same framework for various application domains and languages by simply 
building the necessary recognition resources offline and specifying them in the configuration file. 
The choice of an open VoiceXML platform is an important design decision. We have chosen 
OptimTalk1 as it is open enough to allow the integration of our own speech recognizer, telephone 
interface, etc.  

                                                 
1 http://www.optimsys.cz/ 
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As HTK-based speech recognizers require grammar in HTK's Standard Lattice Format, a separate 
grammar component supporting this grammar format within the VoiceXML framework is 
developed. Our ATK-based semantic interpreter simply ignores semantically irrelevant terms 
from the recognition output and parses only the content bearing terms. The use of grammars 
specific to a given dialog state and ignoring irrelevant filler-words improves the performance of 
the system further in real time. The system combines the power and flexibility of HMM-based 
speech recognizer and the convenience of VoiceXML for dialog authoring. 

2   Data Preparation 
The data used in this endeavor consists of a total of 22 hours of telephone speech from the 
Communicator 2001 Evaluation corpus [3]. The corpus consists of utterances recorded as users 
interacted with eight2 different Airline Travel Planning dialog systems. We split the 22-hour 
telephone speech data spoken by 149 speakers into five sets; namely, the training set which 
consists of 15 hours of speech (12,863 utterances) spoken by 100 speakers (28 male and 72 
female) to build the baseline speaker independent model; male adaptation set (526 utterances 
spoken by 6 male speakers) to adapt the speaker independent model to male speech; male test set 
(1047 utterances spoken by 8 male speakers) to test how well the various models perform for 
male speakers; female adaptation set (2522 utterances spoken by 15 female speakers), and female 
test set (2892 utterances spoken by 20 female speakers) to test the performance of the various 
models for female speakers. We use a merger of the male and female adaptation data as a 
development set in order to determine certain parameters experimentally. 

For gender identification, the same acoustic training data is used to train the gender recognizer, 
but for testing purposes we merged the adaptation and testing data of both male and female 
speakers and selected only 1450 short utterances which are mainly “yes”, “yeah”, and “no” 
spoken by all speakers (14 male and 35 female speakers) as we would like to decide the gender of 
the speaker with the first utterance which is essentially a yes or a no in our dialog design. 

As the vocabulary used in the application domain is fairly limited (about 1200 distinct words), a 
back-off bigram language model is built on the training transcriptions. The pronunciation lexicon 
is based on the CMU public domain pronunciation dictionary.   

3    Feature Extraction 
We used Mel-Frequency Cepstral Coefficients (MFCCs), which are widely used features for 
automatic speech recognition systems [4] to transform the speech waveform into a sequence of 
discrete acoustic vectors. The MFCCs are computed by performing pre-emphasis on the acoustic 
waveform, dividing the incoming waveform into blocks of 25ms length and 10ms overlap, 
multiplying each block by a Hamming Window, followed by removing the DC offset from each 
windowed excerpt of the waveform. Then the Fast Fourier Transform (FFT) of the windowed 
signal is calculated and the square of the magnitude (i.e., the power spectrum) is fed into a series 
of Mel-Frequency filterbank channels. Then, Discrete Cosine Transform (DCT) is applied to the 
logarithm of the filterbank outputs. The Discrete Cosine Transform has a notable effect in favor 
of the diagonal covariance assumption by de-correlating the features in the feature vectors so that 
each feature can be assumed to be independent of any other feature. Finally, the first and second 

                                                 
2 ATT, BBN, Carnegie Mellon University, IBM, Lucent Bell Labs, MIT, SRI and 
University of Colorado at Boulder 
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order temporal time differences (i.e. the differences between parameter values over successive 
frames - delta, and delta-delta coefficients) are computed to better model temporal variation of 
the speech spectrum. The overall output of this process is a feature vector containing 39 
components made up of 13 cepstral coefficients including the 0th order coefficient (c0 to c12) and 
the corresponding delta and delta-delta coefficients. 

4    The Baseline System 

4.1   Acoustic Modeling 
The purpose of acoustic modeling is to estimate the state transition probabilities and the 
observation likelihood of an observation vector given an HMM state. We use the Baum-Welch 
algorithm that is an implementation of Expectation Maximization in order to estimate these 
parameters given the training data in the form of observation vectors. 

A weighted mixture of multivariate Gaussians is used to model observation likelihoods. The 
acoustic likelihood bj (ot) of a feature vector ot given an HMM state j with mean vectors µjm and 
diagonal covariance values σ2

jmd
 is given by: 
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where D is the dimension of the feature vectors, M is the number of Gaussian components per 
state, and ωjm is the mixture weight of the mth component in state j satisfying the property 
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4.2   Basic Context Independent Models 

We represent each monophone by a hidden Markov model of 3 emitting states with left-to-right 
topology, where each emitting state has two transitions: back to itself and to the next state. The 
entry and exit states are non-emitting and consequently have no probability output distribution 
associated with them. The mean and variance of each state of the monophone models are 
initialized to the global mean and variance of the training data. The transition probabilities from 
an emitting state back to itself and to the next state are set equiprobable; the transition from the 
entry state to the first emitting state is set to 1.0 and all other transitions are set to zero.  

The parameters of the models are then re-estimated in two consecutive runs of the Baum-Welch 
algorithm using monophone transcription of the training data. Then the silence model is made to 
take care of impulsive noises in the training data by adding extra transitions from state 2 to 4 and 
from state 4 to 2 in the model. Furthermore, to account for any pauses introduced by the speaker 
between words of an utterance, a one state short pause (sp) model is created whose emitting state 
is tied to the center state of the silence model. Then two more iterations of the Baum-Welch 
algorithm are run on the resulting models. To account for multiple pronunciations of some words 
in the dictionary, a new, realigned transcription is generated that contains the pronunciation that 
best matches the acoustic evidence using the Viterbi alignment. 
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4.3   Context Dependent Models 

Context-independent models are poor discriminators as a phoneme can be realized differently 
depending on context. The common approach to achieve good phonetic discrimination is to use 
triphones. Crossword triphones (XWRD) where context spans word boundaries are considered. 

In order to build context-dependent, tied-state triphone models, we start with a set of basic 
context-independent monophone HMMs trained as described in section 4.2. The resulting single-
Gaussian monophone models are then used to generate triphone prototypes and re-estimated 
using the Baum-Welch algorithm with a triphone list and triphone transcriptions. 

When triphones are used, usually training data becomes insufficient as the resulting system has 
too many models to train. Tying is one way to deal with this problem of data insufficiency.  We 
use a phonetic decision tree that is based on asking phonetic questions about the left and right 
contexts of each triphone to distinguish clusters and tie similar states within triphone sets.  

The stop criteria for clustering are the outlier threshold that determines the minimum number of 
training data that each leaf in the decision tree must have to stand as a cluster, and the threshold 
specifying the increase in log likelihood that has to be achieved by any question at any node. If a 
split in the decision tree increases the log-likelihood by less than this value, splitting stops and 
the decision tree is complete. The optimal values for these two parameters are experimentally 
determined using the development set. 

Once we have single-Gaussian, tied-state word-internal or crossword triphones, we increment the 
number of Gaussian mixture components to the desired number. It was experimentally found that 
32 Gaussian mixture components per state are optimal for this setup using the development set. 
The number of Gaussian components per state is incremented by cloning the component with the 
largest mixture weight, dividing the component weight by 2, and perturbing the means by +/- 
0.2σ. The resulting models are then re-estimated with 8 consecutive runs of the Baum-Welch 
algorithm. This is repeated until we have estimated models with the required number of mixtures. 

5   Gender Recognition 
In an utterance, not only the message that the speaker wants to express but also hidden 
information that include the speaker’s age group, gender, and other speaker dependent 
information are conveyed. Considering gender, it can be observed that there is apparent 
difference between the mean and variance of male and female feature vectors. Therefore, it is 
possible to use a Gaussian Mixture Model (GMM) to identify the gender of a speaker given the 
parameters of an utterance spoken by a male or female speaker. In order to use the existing HTK 
infrastructure for gender recognition, we modeled a GMM as a single-state hidden Markov model 
(HMM) with a Gaussian mixture observation density where there is no state transition probability 
within the model. 

In a GMM-based gender classifier, the parameters of an utterance are modeled with the mixture 
weights, mean vectors and variance parameters of the component densities. The feature vectors 
are assumed to be independent. Therefore, the log-likelihood of a model λ for a sequence of 
feature vectors O = {o1,o2, …,oT} is defined as: 

 λ)|p(o=λ)|p(O
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where M is the number of Gaussian components per model, and ωm  is the mixture weight of the 
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Two GMMs (one for each gender) are trained using the Baum-Welch algorithm in order to 
estimate the likelihood of the model λ given a sequence of training data in the form of feature 
vectors. The experimental results are following in Section 7.1. 

6   Gender-Adapted Models 
The performance of speaker independent (SI) systems degrades when tested with speakers and 
environments that are not sufficiently represented in the training corpus. Therefore, it is necessary 
to adapt SI acoustic models to the new context in which the speech recognizer is to be used. 
Speaker adaptation uses speaker specific information given in an adaptation data to adjust the 
acoustic model parameters (mean and variance of the density functions) of the initial speaker 
independent model to reflect the characteristics of the current speaker. Considering the existence 
of within-gender acoustic similarity due to similar vocal tract size of speakers of the same gender, 
adapting the speaker independent HMMs using adaptation data from each gender can give robust 
gender dependent models.  The idea is to capture gender specific characteristics from the 
adaptation data and transform the model parameters of the initial model set accordingly to get 
gender-adapted HMMs that could perform better than the original speaker independent model. 

The gender-adapted models are built using supervised, Maximum Likelihood Linear Regression 
(MLLR), and Maximum A Posteriori (MAP) adaptation techniques implemented in HTK. 

6.1   Maximum Likelihood Linear Regression (MLLR) 

Maximum Likelihood Linear Regression (MLLR) is a transformation-based method that 
estimates linear transformations for the model parameters (mixture components of HMMs) to 
maximize the likelihood of the adaptation data [5]. MLLR uses a regression class tree to cluster 
acoustically similar Gaussians that are close to each other in acoustic space into regression 
classes that share a common transform. This makes adaptation of densities for which there were 
no observations in the adaptation data possible [1].  

The adaptation of the transition probabilities and the mixture component weight will have little 
effect on the final performance [6]. However, transformation of the diagonal covariance matrix 
can give performance improvement. Since reliable variance estimation from a limited amount of 
data is difficult, only Gaussian mean vectors are updated in the experiments presented here. The 
experimental results are presented in section 7.4.1. 

6.2   Maximum A Posteriori (MAP) Adaptation 

Maximum A Posteriori (MAP) estimation is a model-based approach that maximizes the 
posterior probability using prior knowledge about the model parameter distribution.  Given good 
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initial models and large amount of adaptation data, MAP can perform better than MLLR. MAP 
re-estimates the models unlike MLLR that transforms the models and re-estimation requires large 
amount of data. The drawback of MAP approach is that if there was insufficient adaptation data 
for a phone to reliably estimate a sample mean, no adaptation is performed [7] for that phone. 
The experimental results are shown in section 7.4.2. 

7   Experimental Results 

7.1   Gender Recognition 

A Gaussian Mixture Model (GMM) based gender recognizer is built using 39 MFCC coefficients 
extracted as described in section 3. The number of Gaussian mixture components required for 
adequate performance and the number of iterations between each Gaussian increment were 
experimentally found to be 32 and 4, respectively on the development set. In order to find out 
which features and coefficients yield the best result, Perceptual Linear Prediction (PLP) 
coefficients and MFCC features were tried as shown in Table 1. 
As can be seen in Table 1, MFCC feature vectors including C0 as the energy term give the best 
result. This was also true for speech recognition in our setup. Traditionally the 0th MFCC 
coefficient is considered futile and is discarded; however, as described in [8] the 0th coefficient 
contains a collection of average energies of each frequency band in the signal being analyzed and 
hence is useful. 
MFCC Feature Kind Accuracy (%) 
MFCC_E_D_A  94.0 
MFCC_0_D_A  96.62 
PLP_0_D_A 96.41 
PLP_E_D_A 91.52 

Table 1 - GMM-based Gender Classifier 

7.2   Speaker Independent Models  

To measure the performance of the speaker independent system for male and female users, the 
baseline system is tested using separate male and female speakers. As can be seen in the 
following table, the performance of the model for female speakers is by far better than male 
speakers. This clearly attributed to the fact that male speakers are less represented in the training 
data. 
HMMTYPE Gender Accuracy (%) 
XWRD Male 78.45 
XWRD Female 86.34 
MONO Male 72.68 
MONO Female 81.87 

Table 2 - The Baseline Speaker Independent Model 

7.3  Gender Dependent Models 

Building separate gender dependent models for male and female speakers is one way to improve 
performance as the inter-speaker variability is now limited to a given cluster. As can be seen in 
Table 3, gender dependent models give apparent performance improvement. 
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HMMTYPE Gender Accuracy (%) 
XWRD Male 78.69 
XWRD Female 86.46 
MONO Male 76.66 
MONO Female 82.72 

Table 3 - Gender Dependent Models 

7.4 Gender-Adapted Models 
We have generated gender-adapted models from the speaker independent model using MLLR, 
MAP and a combination of the two. 

7.4.1 MLLR adaptation of the Means 

The most important design parameter to decide is the number of classes required which must be 
determined empirically. We found 32 and 40 as appropriate number of classes for the male and 
female models experimentally using the adaptation data of the respective gender. As can be seen 
in Table 4 the MLLR gender-adapted models give comparable results to the separate gender 
dependent models shown in Table 3. In both cases, considerable improvement is obtained. 
HMMTYPE Gender Accuracy (%) 
XWRD Male 79.79 
XWRD Female 86.43 
MONO Male 75.19 
MONO Female 82.51 

Table 4 -  MLLR Adaptation 

7.4.2   MAP adaptation 

For MAP adaptation, the model parameter distribution of the speaker independent model is used 
as the informative priors. An important design parameter is the scaling (relevance) factor (τ), 
which is a weighting of the prior knowledge to the adaptation speech data. This value has been 
experimentally found to be 80 and 100 for male and female models, respectively using the 
adaptation data of the respective gender. 
HMMTYPE Gender Accuracy (%) 
XWRD Male 78.59 
XWRD Female 86.19 
MONO Male 74.98 
MONO Female 82.25 

Table 5 - MAP Adaptation 
As can be seen in the Table 5, MAP adaptation also gives improved result for monophone models 
but not for crossword models. This could be attributed to the fact that the amount of adaptation 
data is not sufficient to reliably re-estimate the model parameters for crossword triphones. 

7.4.2 MLLR and MAP adaptation combined. 

As can be seen in Table 6, using the MLLR transformed means as the informative priors for 
MAP adaptation gives slightly improved results. 
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HMMTYPE Gender Accuracy (%) 
XWRD Male 79.81 
XWRD Female 86.45 
MONO Male 75.33 
MONO Female 82.71 

Table 6 - MLLR and MAP combined 

8   Conclusion 
Due to the gender-imbalance in the training corpus, the resulting SI model performed not so well 
for the under represented gender. We, therefore, described the various adaptation techniques that 
can be used in order to generate gender-adapted models from speaker independent HMMs. 
Generating gender dependent models using adaptation technique is preferred to building separate 
gender dependent models as fully trained initial models contain some general speech information 
that can be useful for the new system as well. However, the gain in terms of accuracy is not 
significant, and this may be attributed to the fact that the algorithms, which are essentially 
speaker adaptation techniques, did not capture enough within-gender similar acoustic information 
from the adaptation data. A GMM gender recognizer that can decide the gender of a speaker with 
the first and very short utterance with an accuracy of 96.62% is also reported. 
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