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Abstract: This paper introduces add-on tools aligned with the Hidden-Markov-
Model Toolkit (HTK) to use Support Vector Machines (SVM) in speech recog-
nition. The resulting method and tool is named HSVM: Hidden-Markov-Model
Toolkit using Support Vector Machines. Because SVMs have proven their gen-
eralization performance compared to the common maximum likelihood or MAP
approach, a speech recognizer can profit from the use of SVMs for classifying the
acoustic features. Given segmented speech data provided by a underlying HMM,
the presented tools enable to post-classify acoustic features based on N-best-lists
or recognition lattices. HSVM transforms the SVM predictions to probabilities and
feeds them back into the recognition process in a offline fashion. Improvements
using HSVM are presented for a phoneme classification on the TIMIT corpus as
well as Wallstreet Journal Cambridge corpus.

1 Introduction

Hidden Markov Models (HMM) are the state-of-the-art of modern speech recognition archi-
tectures for modeling the temporal variability of speech. To predict from acoustic features
x ∈ IRn, Maximum A Posteriori (MAP) classifiers are employed, i.e.

y∗(x) := argmax
y∈Y

[
p(x|ϑy)P (ϑy)

p(x)

]
. (1)

The parameters ϑy are usually estimated from a set Xy of features xm ∈ IRn belonging to
known classes y ∈ Y (words or phonemes) utilizing a Maximum Likelihood (ML) method:

ϑ∗y(Xy) := argmax
ϑy

[p(Xy|ϑy)] . (2)

But this practical approach is not optimized with respect to a best generalization performance.
Other methods are known to give superior generalization mainly on static data, namely Support
Vector Machines [1]. Unlike the ML method that minimizes the empirical risk

Remp(ϑ) :=
1

M

∑
m∈M

L(zm, ϑ) (3)

zm := (xm, ym) ∈ IRn × Y ,m ∈M := {1, . . . ,M}
using an appropriate loss function L, the Support Vector Machine algorithm exerts influence on
an upper bound of the actual risk

Ract(ϑ) :=

∫
IRn×Y

L(z, ϑ)dP (z) (4)
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Figure 1 - Affine linear separating hyperplane in a generalized space called feature space. The dark
points are the Support Vectors laying at the margin (dotted lines).

by controlling its complexity h, called VC-Dimension [1]. This is achieved by learning a linear
decision function y∗ : IRn → Y := {−1, 1},

y∗(x) := sign

[
β +

∑
m∈S

α∗mymk(x,xm)

]
,S := {s ∈M | 0 < α∗s ≤ ζ}, β ∈ IR (5)

from a set of given training examples zm, which minimizes the empirical risk and provides a
maximum margin between two clusters and their class boundary (Fig. 1). The parameter ζ is
free and controlls the ratio of margin and empirical error, and k(x,xm) = 〈x,xm〉. The vectors
xm ∈ IRn, m ∈ S are called Support Vectors (SV). Although, the SVM learns a linear clas-
sification in the input space IRn, it is possible to learn a non-linear decision boundary using a
non-linear transformation ϕ : IRn → H which maps the features into a high-dimensional space
H. However, one only has to know the kernel function evaluations k(x,xm) = 〈ϕ(x), ϕ(xm)〉
without knowing ϕ explicitly. But for this purpose the kernel k has to satisfy the Mercer’s
condition [2] to be a scalar product in some H. Commonly used kernels are the polynomial
kernel k(x,xm) := (〈x,xm〉 + 1)d and the Gaussian radial basis function kernel k(x,xm) :=
exp(−‖x− xm‖2/2σ2). The SVM is particularly capable on small training-sets, where a small
empirical error (3) cannot ensure a small actual risk (4), and it shows a better ability to gen-
eralize than empirical learning algorithms, e.g. Artificial Neural Networks (ANN) or MAP
classifiers. Unfortunately, SVMs do not have the ability to model the temporal structure of
speech, yet. Thus, a speech recognition architecture, which combines both methods (HMMs
for modeling the temporal variability and SVMs for acoustic classification), may improve the
recognition performance compared to a stand-alone HMM system. This paper introduces meth-
ods and software tools, namely HSVM: Hidden-Markov-Model Toolkit using Support Vector
Machines, for training and testing SVM classifiers with segmented speech data, the estimation
of probabilities from SVM outputs, as well as re-scoring N-best-lists and lattices utilizing the
trained SVM classifiers. Recognition improvements using HSVM are presented for a phoneme
classification on the TIMIT corpus as well as Wallstreet Journal Cambridge corpus [3].

2 What is HSVM?

HSVM provides an environment to investigate a combined system architecture consisting of a
HMM based speech recognizer as well as SVM classifiers (Fig. 2). A underlying HMM recog-
nizer architecture is needed, because of the inability of SVMs to model the temporal evolution.
The segmentation information provided by the Viterbi decoder is used to compose incoming
features to vectors of constant length. This is crucial for the training of static SVM classifiers
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(a) Functional view. (b) The HSVM architecture.

Figure 2 - Scheme of HSVM including the HMM recognizer [4] and SVMlight [5].

and the SVM re-scoring of recognition hypotheses. HSVM is embedded into the system envi-
ronment of the Hidden Markov Toolkit (HTK) [4]. HTK, developed at the Cambridge Univer-
sity Engineering Department (CUED), provides powerful tools to handle HMM models, mainly
for speech recognition. The tools are written in the programming language C (like HSVM)
and the modular design makes it possible to extend their functionality or to develop new tools.
The SVM training and classification algorithms are implemented by SVMlight [5]. SVMlight
is able to solve the SVM optimization problem efficiently. It handles several thousand training
examples using a decomposition strategy and kernel caching.

3 HSVM in Depth

For the sake of brevity, in the following only the most important features of the tool box are
described. All other options are described in more detail in [6].

4 Generic Properties

The command line invocation of a HSVM tool foo is similar to the general form for invoking a
HTK tool [4]. The general syntax is

HSVMfoo [option] SVMlist Files

where SVMlist is a list-file consisting of all labels (e.g. phonemes or words) used for train-
ing, testing and re-scoring. The list-file has to be a simple text file with one label per line. Files
are the parameterized feature data files which have to be in either native HTK format or Entropic
Esignal ESPS format [4]. Explicitly, for every feature-file a label-file has to exist. A label-file
contains the alignment information and a description of the data. Several file formats are defined
for the label-files - HTK, ESPS, TIMIT and SCRIBE label-file formats [4]. Multiple training-
files and label files can be handled using Script-Files (SF) and Master-Label-Files (MLF) [4].
After a tool HSVMfoo is invoked, it reads in all feature-files and label-files. HSVMfoo uses the
information contained in these files to build composition vectors [3] which are then independent
of the segment duration and are needed for the use of SVM classifiers (Fig. 3). The percentage
of grouping can be controlled by the option -r number of regions %w1,%w2, . . . ,%wi. The
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Figure 3 - Scheme of the composed vector building process.

numbers %w1,%w2, . . . ,%wi are the specific weights denoted in percent. Internally, the com-
position vectors are stored in a dynamic hashtable, because it is not known in advance the order
of the labels as well as how many times some label will occur in the descriptions. Utilizing
a hashtable for storing also improves the average access time. In this context, it is important
to note that HSVMfoo holds all composition vectors in memory to save time and that only the
memory management of the OS decides when it is necessary to swap out the data on the hard-
disk. The data transfer from and to the hashtable, the HTK modules and SVMlight is managed
by HSVMfoo’s data managment and process control block (Fig. 2).

5 HSVMTrain

Syntax: HSVMTrain [option] SVMlist trainFiles

HSVMTrain implements the training of the SVM classifiers. After all trainFiles are pre-
processed, HSVMTrain starts the training of the SVMs associated to the labels in SVMlist and
the setting of the option -l label. If label is set, then HSVMTrain estimates one SVM model, else
all SVM models are estimated as listed in SVMlist. A SVM model is estimated using the compo-
sition vectors associated to the label that is in process, currently. This label accounts for category
{1}, while the remaining composition vectors establish the opposite set of class-membership
{-1}. Therefore, it is called one versus all training, instead of one versus one training. Each
trained SVM model will be saved as a file named label.mod. The option -t type sets the type of
kernel function SVMlight will use. Defined types are 0: euclidean kernel k(x,xm) := 〈x,xm〉,
1: polynomial kernel k(x,xm) := (s〈x,xm〉 + z)d, 2: Gaussian radial basis function kernel
k(x,xm) := exp(−γ‖x − xm‖2), 3: sigmoid kernel k(x,xm) := tanh(s〈x,xl〉 + z) and 4:
user-defined kernel. The options -d param, -g param, -s param, -z param and -u kern set the
parameters of the above kernel functions. In conjunction to the kernel choice, the parameter ζ ,
which justifies the ratio between the classification error and the range of separation, can be set
by -c zeta.

6 HSVMProbEst

Syntax: HSVMProbEst [option] SVMlist trainFiles
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After the SVMs are trained using HSVMTrain, the next step is the estimation of the posterior of
class-membership P (y|f(x)) from the SVM outputs f(x) := β +

∑
m∈S α

∗
mymk(x,xm). This

is necessary for connecting HMMs and SVMs, because the underlying HMM system provides
probabilities, whereas the SVM outputs f(x) represent a kind of distance measure between a
test pattern x and the decision boundary {x|f(x) = 0}. At this point, HSVMProbEst comes
into play. HSVMProbEst estimates the posterior P (y|f(x)) assuming that the SVM outputs
f(x) are Gaussian distributed with equal variances [7], i.e.

p(f(x)|y) :=
1

σ
√

2π
exp

(
−[f(x)− µy]2

2σ2

)
, y ∈ {−1, 1}. (6)

Applying Bayes formula, we get the conditional probability that the vector x belongs to the
positive class, whereas a and b depend on µy and σ:

P (y = 1|f(x)) =
p(f(x)|y = 1)P (y = 1)∑
y∈{−1,1}

p(f(x)|y)P (y)
=

1

1 + exp(a · f(x) + b)
. (7)

HSVMProbEst estimates the parameters a and b using a Minimum-Squared-Error (MSE) ap-
proach mina,b χ

2(a, b), assuming a estimated posterior P̂ (y = 1|f(x)) scatters identically and
independently Gaussian distributed around the assumed model P (y = 1|f(x)) for every pattern
xm ∈ IRn,m ∈M := {1, . . . ,M}, i.e.

χ2(a, b) :=
∑
m∈M

[
P̂ (y = 1|f(xm))− P (y = 1|f(xm))

]2
. (8)

It can be shown that the minimization of the sum of squared deviations (8) is equivalent to
the ML estimation. Thus, it is sufficient to obtain a ML estimation of a and b by solving
−∇χ2(a, b) = 0. HSVMProbEst iterates a solution of this non-linear system by using a multi-
dimensional Newton-method for non-linear equations. The approximation P̂ (y = 1|f(x)) is
obtained from the relative frequencies P̂ (y) as well as p̂(f(x)|y) that is estimated by the use of
histograms (Fig. 4). To determine a appropriate start point, HSVMProbEst uses a first-order
Taylor-approximation of P (y = 1|f). If the Newton-method does not converge (e.g. in the case
of too few examples), HSVMProbEst falls back to the start parameters. After completing the
estimation process, the parameters are saved in a file named label.prm.

7 HSVMTest

Syntax: HSVMTest [option] SVMlist testFiles

HSVMTest enables the evaluation of estimated SVM models and output probabilities using
parameterized test data in testFiles. All label-files are composed to form a list of length T of
sequential tuples (xτ , lτ ), whereas τ ∈ T := {1, . . . , T} defines the rows within the list, xτ
the composition vectors and lτ ∈ L the associated labels declared in the SVMlist L of length
L. Both, SVM models and labels, are synonymously termed lτ because a SVM model lτ .mod
corresponds unambiguously to the label lτ in the description. Using the option -l label, a specific
SVM model may be announced for testing. Else, all SVMs declared in the SVMlist will be
tested. HSVMTest provides the Reference-Classification-Error (RCE), the total Classification-
Error (CER) and optional the SVM-Hypotheses-Error (SHE) when setting the option -n. The
RCE is the average of misclassified test vectors xτ

1 using the SVM models lτ and given the
1e.g., a test vector xτ is actually a member of class {1}, but is predicted by the SVM lτ as a member of class

y∗ = −1
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(a) Histogram for p(f(x)|y). (b) Estimated posterior P (y = 1|f(x)).

Figure 4 - Example estimates calculated with HSVMProbEst.

SVM output y∗l (xτ ), l ∈ L:

RCE :=

∑
τ∈T

d(τ, lτ )

T
, d(τ, l) :=


1 : y∗l (xτ ) = −1 ∧ l = lτ
1 : y∗l (xτ ) = 1 ∧ l 6= lτ
0 : else

. (9)

The second value termed CER, is the average of misclassified test vectors xτ when all available
SVM models l ∈ L are used to classify the vector xτ :

CER :=

∑
τ∈T

∑
l∈L

d(τ, l)

T · L
. (10)

Optional, the SHE determines the ratio of the number of wrong hypotheses against the total
number T of predictions. Wrong hypothesis means, that l(x) := argmaxl∈L [Pl(y = 1|fl(x))]
from a committee of SVM models l ∈ L is not equal to the SVM model lτ :

SHE :=

∑
τ∈T

d(τ)

T
, d(τ) :=

{
1 : l(xτ ) 6= lτ
0 : else

. (11)

Utilizing the SHE, it is possible to evaluate the quality of the estimated output probabilities
P (y = 1|f(x)). Setting the option -x t, a heuristic to shrink the amount of training data corre-
sponding to the category {-1} will be applied. HSVMTest compares the average penalties

Al∗(l) := − 1

|Xl∗|
∑
x∈Xl∗

ln [Pl(y = 1|fl(x))] (12)

for every SVM model l ∈ L, whereas Xl∗ := {xτ |τ ∈ T ∧ lτ = l∗} denotes the set of
composition vectors xτ belonging to the unique label l∗ ∈ L, specified by the option -l label.
Every label l 6= l∗ is deleted from the given SVMlist, if it fulfills the condition A(lτ ) > t. After
reduction, HSVMTest writes the new SVMlist to the file named label.list (label ≡ l∗). This new
list can be used to retrain a SVM with a smaller amount of training data. Additionally, a statistic
of Al∗(l) ∀l ∈ L can be written to the file label.stat via the option -z.
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8 HSVMNbest

Syntax: HSVMNbest [option] SVMlist testFiles

The last step of using SVMs in combination with a HMM based speech recognizer is the
re-scoring of hypotheses produced by the HMM recognizer. Re-scoring N-best-lists is one
possible approach [8]. This is the task of the tool HSVMNbest. A N-best-list produced by the
HTK Viterbi-Decoder consists of the N most likely recognition hypotheses of a test utterance
according to the HMM score. All hypotheses are broken down into their descriptions and their
segmentations, as well as their acoustic scores. HSVMNbest adds the scores ln [P (y = 1|f(x))]
supplied by the SVM models linear weighted to the HMM scores:

scoreHMM/SVM := α · scoreHMM + β · scoreSVM . (13)

The weights α and β are set via the option -s α β. After re-scoring the N-best hypotheses of the
test data, HSVMNbest stores either the re-scored label-files testFiles.rec or a re-scored MLF. It
is also possible by setting the -f option to save only the hypothesis of the N-best ones that has
the maximum total score (termed 1-best hypothesis). Then, the performance of the combined
system can be evaluated utilizing the HTK tool HResults [4].

9 HSVMLattice

Syntax: HSVMLattice [option] dict SVMlist testFiles

Unlike HSVMNbest, HSVMLattice re-scores label lattices produced using the HTK Viterbi-
decoder [4]. The re-scoring of recognition lattices (which also include the hypotheses of the
N-best-list) instead of N-best-lists was proposed in [3]. In the same manner, when re-scoring
the N-best-lists, HSVMLattice re-scores the label lattices using a linear combination (13). The
weights α and β are set via the option -s α β. After re-scoring the lattice, the best hypothesis is
found by searching through the lattice for the best path2, e.g. utilizing the HTK tool HLRescore
[4]. Unlike the invocation of the other tools, HSVMLattice needs a dictionary dict as well as a
lattice file for every given testFile. The re-scored lattices are saved as testFile.lat.

2The best path has the maximum total score.

Figure 5 - Absolute phoneme error rates using HSVM.
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10 Experimental Results using HSVM

Phoneme recognition results using HSVM were obtained on the DARPA TIMIT Acoustic-
Phonetic Continuous Speech Corpus (TIMIT) and on the Wallstreet Journal Cambridge Corpus
(WSJCAM0) (presented in [3]). The results on the test-set are summarized in (Fig. 5). Af-
ter SVM N-best-list re-scoring, choosing the best hypothesis improved the phoneme error rate
(PER) about 3.5% (TIMIT) and 2.4% (WSJCAM0) relating to the HMM baseline error. The
re-scored lattices further improved the error rates about 9.2% PER (TIMIT) and 12.8% PER
(WSJCAM0). For comparision, results using simple MAP classifiers instead of SVMs are also
shown in (Fig. 5).

11 Conclusion

This paper presented a toolbox (HSVM) containing tools aligned with HTK for combining
HMM based speech recognizer with Support vector Machines. The main features are:

• Training of SVMs with segmented speech data (HSVMTrain).

• Test and Evaluation of trained SVMs with segmented speech data (HSVMTest).

• SVM output probability estimation (HSVMProbEst).

• Offline N-best-list/lattice re-scoring (HSVMNbest/HSVMLattice).

Improved phoneme recognition rates are reported using HSVM indicating the generalization
performance of SVMs to model the acoustic features of speech.
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