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Abstract: In this paper we evaluate some model-based and data-driven algo-
rithms for robust speech recognition in noise, using the experimental framework
provided by ETSI Aurora 2. Specifically, we focus on statistical linear approxima-
tion (SLA), sequential interacting multiple models (S-IMM), and histogram nor-
malization (HN). As the baseline for the feature extraction scheme we use the ETSI
front-end.

Recognition tests on a subset of Aurora 2 show that SLA is approximately 4 % bet-
ter than HN and that S-IMM is worse than HN by almost 3 % in terms of absolute
word accuracy. A comparison with the ETSI advanced front-end (AFE) is also pre-
sented. While none of these algorithms outperforms AFE, we identify the reasons
why this might have happened and point out potential directions for improvement.

1 Introduction

Recently, ETSI called for proposals for a noise robust speech processing front-end to be used in
a distributed speech recognition set-up. In the scenario defined by ETSI STQ Aurora standard-
ization body, the front-end resides in the mobile terminal and sends encoded speech vectors to
the back-end running on a network server.

The winning denoising algorithm makes use of a two-stage Wiener filter, as well as a voice
activity detector (VAD) for frame dropping. The processed speech vectors are converted back to
the time domain and fed to a Mel filter cepstral coefficients (MFCC) front-end (FE), specified by
[1]. The advanced front-end (AFE) [2] consists in essence of noise reduction, frame dropping,
SNR-dependent waveform processing, and the standard Aurora FE.

This paper is motivated by the somehow surprising observation that at the core of the denoising
algorithm in AFE is a classical speech enhancement technique, i.e. Wiener filtering, which
challenges the belief that speech enhancement methods are suboptimal for automatic speech
recognition (ASR) in noisy environments.

We revisit some denoising algorithms developed specifically for robust speech recognition and
contrast them with AFE. We concentrate our attention on two model-based techniques, namely
statistical linear approximation (SLA) [3] and sequential interacting multiple models (S-IMM)
[4], as well as a data-driven method resulting from the experience we gained with two distinct
histogram normalization (HN) algorithms [5], [6]. The two model-based techniques have also
been investigated for speaker verification in noise [11]. All investigated algorithms are used in
combination with the standard Aurora FE [1], which tested alone corresponds to “no denoising”.
We identify the reasons why these algorithms fail to outperform AFE and point out potential
improvements for model-based techniques.
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The rest of the paper is organized as follows: section 2 describes the model-based algorithms,
section 3 presents the data-driven techniques, section 4 describes the experiments, and finally
section 5 summarizes our conclusions.

2 The Model-Based Approach

2.1 Noise Contamination Model

The effect of time domain additive noise on clean speech can be modeled in the log-spectral
feature domain by a non-linear function [7]

�� � �������� � �� � ������ �	
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where ��, ��, and �� denote the clean speech, noise, and noisy speech log-spectral vectors,
respectively.

We assume a Gaussian mixture model (GMM) with � components for the probability density
function (pdf ) of clean speech log-spectra and a single Gaussian model for the pdf of noise
log-spectra
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Given the environment model of Eq. 1, what is the distribution of the noisy speech vectors � �?
If we replace �������� with the linear approximation

�� � ���� ����� � ��� � � � � (2)

then each Gaussian of clean speech log-spectra will transform into a corresponding Gaussian
of noisy speech log-spectra, so that the distribution of �� is also a GMM with mean vectors and
covariance matrices given by
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In the equation above the prime denotes transposition.

2.2 Statistical Linear Approximation

SLA generalizes the vector Taylor series (VTS) algorithm introduced in [7], where the linear
approximation is simply the first order Taylor polynomial expansion of ��� �����. In contrast to
VTS, SLA [3] computes the coefficients of Eq. 2 by minimizing the mean squared error between
the environment function and its Taylor polynomial of �-th order. The coefficients are obtained
as a function of the unknown noise statistics �� � �������.

Similarly with VTS, an EM algorithm is then employed to improve iteratively the initial guess
of the noise statistics and implicitly the linear approximation. Input to the EM algorithm is the
model of clean speech log-spectra, given by the GMM parameter set �� � ������ ����������,
as well as the observed noisy speech log-spectra 	 � ��������� .
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The EM algorithm starts with an initial guess for the noise statistics ��� � ��
���
� , computed

from the first few non-speech frames, and improves it gradually to become ��
���
� in the 	-th step.

The coefficients ������ �� are updated for each new estimate ��
���
� . The EM algorithm iterates

until the likelihood function has converged. Using the final estimate of noise statistics and
coefficients, the unobserved clean speech log-spectra are computed using the minimum mean
squared error (MMSE) estimator
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���
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2.3 Sequential Interacting Multiple Model

While SLA provides only one estimate of noise statistics for the whole sequence 	 (therefore
implying stationarity), S-IMM provides an estimate ����� of the noise in each log-spectral vector
�� [4]. The algorithm employs a bank of � Kalman filters, which share the state transition
equation but have different observation models, i.e.

�� � ���� � 
��� (5)
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Note that the noise log-spectral vector is treated as the state of interest, and 
� is a zero-mean
Gaussian process.

S-IMM uses an initial guess for ������� and applies the Kalman prediction/update scheme to get
an estimate of noise statistics for each mixture component. The � estimates are combined in
the mixing step to obtain a single estimate
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where 	� � ���� � � � � ��� and �������� � �������� � ������. This estimate is used to recompute
���� ���� ��� for the next frame and as the initial value for �������.

3 The Data-Driven Approach

3.1 Principle of Histogram Normalization

The goal of histogram normalization (HN) is to provide a transformation 
 ��� which maps each
observed noisy speech vector to a “good” estimate of the unobserved clean speech vector. HN
defines the sought after transformation as the mapping from the cumulative density function
(cdf ) of noisy speech to a reference cdf of clean speech [5], [6].

Let � represents noisy speech with cdf ����� and �� be the estimated clean speech, whose
cdf ������� matches the reference cdf of clean speech �����, i.e. ������� � �����. Then the
transformation 
 ��� is defined as follows

�� � 
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�
���
�
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In other words, HN replaces � by �� so that the equality ����� � ������ holds.
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3.2 Implementation of Histogram Normalization

The histogram bins can be uniformly distributed [6] over the input range ����	� ��
�� of noisy
speech. However, this method is suboptimal for short utterances as some bins may contain no
data, therefore HN with non-uniform bins [5] provides the better alternative. The “optimal” non-
uniform bins ������ ��� are selected such that ������ � 	��, where �� is the total number of
bins. Note that this corresponds to dividing the range of input cdf in uniformly-spaced intervals.

In [6] not only the noisy speech (testing data) but also the clean speech (reference/training data)
are transformed to a Gaussian distribution with zero mean and unit variance. Our implementa-
tion uses a combination of the methods presented in [5] and [6], in that we use non-uniform bins
[5] and transform the clean speech reference data to a standard Gaussian [6] prior to processing
of noisy speech.

Let ��

� and ��

� be the quantiles of the noisy and respectively clean speech data. For cdf match-
ing we simply use linear interpolation, i.e.
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Since multi-dimensional cdf matching is impracticable, HN is done using marginal 1-D his-
tograms. This is equivalent to matching the multi-dimensional cdf only if the vector compo-
nents are independent, which is clearly not the case.

4 Experimental Results

4.1 Database and Setup

All simulations were done on a subset of the ETSI Aurora 2 experimental framework, that is
clean training set and test set A. The recognizer was trained using HTK as proposed by the ETSI
STQ Aurora working group following [8]. The input to HTK are features with 39 coefficients
consisting of 13 MFCCs plus delta and delta-delta coefficients. A single vector corresponds to
a frame of length 25 ms and a frame shift of 10 ms.

For the case of SLA and S-IMM algorithms, the log energy was replaced by the zero-th cepstral
coefficient ����. Compression and coding methods were not applied to any of the front-end
schemes.

4.2 Performance Evaluation

In order to assess the relative merits of the algorithms under investigation, we rely on the word
accuracy, which is the standard performance measure used by the ETSI STQ Aurora standard-
ization body. The word accuracy is defined as

Word Accuracy �
� �� � � � �

�
� ���� (10)
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Figure 1 - Word accuracy on subway

noise
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Figure 2 - Word accuracy on babble

noise
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Figure 3 - Word accuracy on car noise
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Figure 4 - Word accuracy on exhibition

noise

where � is the total number of words in the reference labels, � denotes deletions, � substi-
tutions and � insertions. Please note that the word accuracy can take on negative values if the
number of insertions is large.

Another performance measure, i.e. word recognition rate, is also taken into consideration which
is defined as

Word Recognition Rate �
� �� � �

�
� ���� (11)

4.3 Results and Analysis

Analysis in word accuracy on each type of noise shows that HN performs better than S-IMM in
subway and babble noises as shown in Figures 1 and 2, and performs worse in car and exhibition
noises as shown in Figures 3 and 4, especially at high SNR. The performance of SLA is very
much comparable with that of AFE in car and exhibition noises.

In order to better visualize the overall performance, a global word accuracy was computed for
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Figure 5 - Word recognition rate on sub-

way noise
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Figure 6 - Word recognition rate on bab-

ble noise
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Figure 7 - Word recognition rate on car

noise
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Figure 8 - Word recognition rate on ex-

hibition noise

each method by averaging its performance from 0 to 20 dB and also for all types of noise
conditions. The results are shown in Table 1. Note that the perfomance of the FE was evaluated
using ���� instead of the log energy. A complete description of the FE and AFE performance in
word accuracy on Aurora 2 is shown in [9] and [10] respectively.

FE S-IMM HN SLA AFE

Word Accuracy [%] 58.89 77.08 79.70 83.53 87.51

Table 1 - Average word accuracy over all noises and SNRs.

Based on the results from Table 1, SLA as a model-based technique gives better results than HN,
but this surprisingly does not hold for S-IMM. The AFE in this case performs really well com-
pared to the other noise compensation methods. This could be explained by the fact that AFE
employs not only a noise reduction scheme but also a feature vector selection (FVS) method.
The FVS is basically a frame dropping method based on a VAD. It will improve the recognition
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performance significantly by reducing the number of insertion errors which occur for speech
preceeded and succeeded by long noisy non-speech segments.

Lower word accuracy for model-based noise compensation methods is attributed to the limita-
tions of the environment model of Eq. 1 which holds only for speech segments. During non-
speech segments, the model is not applicable, resulting in a high residual noise which causes
a large number of insertion errors. This limitation does not exist in HN and particularly not in
AFE, which drops the frames detected as silence. The word recognition rate is therefore useful
to actually observe the potential of having a smaller amount of insertion errors. Figures 5, 6, 7
and 8 show the word recognition rate on subway, babble, car and exhibition noise respectively.

The performance of SLA as shown in Figures 5 and 6 is now comparable to the AFE on the other
two noise conditions, i.e. subway and babble noise, where it was previously reported worse in
term of word accuracy. S-IMM in this case performs better than HN in all noise conditions al-
though it is still below SLA. An overall performance which employs similar calculation method
as for word accuracy is obtained and shown in Table 2. It clearly supports the observation based
on the figures stated earlier.

FE S-IMM HN SLA AFE

Word Recognition Rate [%] 70.04 85.65 81.81 88.03 88.64

Table 2 - Average word recognition rate over all noises and SNRs.

5 Conclusions

In this paper we have investigated two model-based denoising algorithms, SLA and S-IMM,
and a data-driven method, HN, in the context of Aurora 2 evaluation. While none of these
algorithms outperforms AFE, we identify the reasons why this might have happened as well as
point out potential improvements for SLA and S-IMM.

The model-based algorithms use an environment degradation model which breaks down during
non-speech segments, leading to high residual noise and hence a large number of insertion
errors. A direction for improvement is to combine them with silence frame dropping using a
VAD, and also cepstral mean subtraction. Histogram normalization, on the other hand, suffers
from the independence assumption of the vector components.

Surely, with the exception of S-IMM none of the other two methods could compete for a better
AFE, given that they are batch processing techniques and the latency requirements on AFE
are very strict. However, higher latencies are allowed for applications such as voice control
in mobile phones, making batch processing algorithms a viable alternative to AFE, provided a
better performance is achieved.
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