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Abstract:

In this paper we present a real-time microphone array system which performs 3D
source localization, multi channel speech enhancement and robust speech recogni-
tion. The acoustic source localization uses the SRP-PHAT method [1] to produce
potential source locations. A clustering algorithm excludes outliers and enables
a multi source tracking. The localizations are finally optimally filtered with an
appropriate Kalman filter. The proposed speech enhancement, a weighted subar-
ray Delay-and-Sum beamformer, is designed to cope with the problem of diffuse
noise and changing speaker positions subject to minimization of the word error rate
(WER) of an automatic speech recognition system (ASR). The proposed algorithm
reduces the WER by more than 50 % compared to the WER of a single microphone
signal.

1 Introduction

“Sensing People” [2] [3] denotes the description and analysis of persons in digital images and
from acoustical signals with respect to their state, their activity, their identity and many other
aspects. Intelligent cameras and sensors integrate sensing people functionalities for multime-
dia applications and industry electronics. They automatically extract personal data from sensor
signals for many applications. For this purpose techniques are developed which allow the local-
ization and the description of persons in video data from CCD-cameras, CMOS-cameras and
in audio signals from microphone arrays. Microphone arrays yield information about the direc-
tion of acoustic sources. CMOS-cameras are used to capture the 3D profiles of a scene. All the
data are integrated and further analyzed within a sensor fusion module. Figure 1 visualizes the
concept of “Sensing People”.
Acoustic source localization based on microphone arrays has been a mainstream research topic

for over two decades. The solutions available in the literature can be coarsely classified into
three broad categories [4]: those based on maximizing the steered response power (SRP) of a
beamformer; those based on High-Resolution Spectral Estimation (HRSE) methods; and those
based on Time-Difference Of Arrival (TDOA) algorithms. Steered Beamforming is a well-
known method for deriving information on the source locations directly from a filtered linear
combination of the acquired signals. Methods based on HRSE imply the analysis of the corre-
lations between the acquired signals, while TDOA methods extract information on the source
location through the analysis of a set of delay estimates.
Methods based on TDOA algorithms have two steps. First, they estimate the TDOAs. The

most popular method for TDOA estimation is the cross correlation approach. A more robust
estimation can be achieved with the generalized cross correlation GCC (e.g. GCC-PHAT) [5].
A more recent approach is the so called Adaptive Eigenvalue Decomposition (AED) algorithm
[6]. The AED algorithm performs better than the GCC-PHAT algorithm in highly reverberant
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Figure 1 - Sensing People Concept and Partners

environments. The second step is to estimate the position of the source with the knowledge of
the TDOAs.
Source localization methods of the second category are all based on the analysis of the spatial

covariance matrix (SCM) of the array sensor signals. The SCM is usually unknown and needs
to be estimated from the acquired data. Such solutions rely on high resolution spectral estima-
tion techniques [7]. Popular algorithms based on HRSE are Minimum Variance Beamformer
(MVB) [8] and MUltiple SIgnal Classification (MUSIC) algorithms [9]. These algorithms can
be extended to wideband signals, e.g. speech, by transforming the signal into narrowband sig-
nal. Each narrow band signal can be processed individually (incoherent method) or an universal
focusing SCM [10] can be generated to perform a coherent localization.
Roughly speaking, the optimal maximum likelihood (ML) SRP-based localization methods

rely on a focused beamformer, which steers the array to various locations in space, and look for
peaks in the detected output power [11]. In its simplest implementation, the steered response
can be obtained through a Delay-and-Sum process performed on the signals acquired by two
microphones. One of the two signals is delayed in order to compensate for the propagation
delays due to the incidence direction of sounds. SRP based localization methods are very robust
especially the newly proposed SRP-PHAT method [1].
In this paper we will present a real-time microphone array system which performs a localization

with the SRP-PHAT method, Kalman filtering and clustering of the obtained positions, multi
channel speech enhancement algorithm and speech recognition. Results will be given in a
speaker tracking example, recognition error rates of the newly developed speech enhancement
algorithm and the traditional Delay-and-Sum beamformer will be compared.

2 Sensor placement

Sensor placement is the first issue in the design of a microphone array. Acoustic source local-
ization algorithms generally exploit the coherence between the acquired sensor signals. Thus,
we will group the microphones into microphone pairs whose correlation will be used for the
localization. The distance between microphones grouped to a pair should be small because the
coherence of the microphone signals decreases with the distance between the sensor positions
[12], [13]. For a TDOA based maximum likelihood localization algorithm, Brandstein et al.
derived a predictor for the covariance of the expected localization error ∆p depending on the
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variances of the TDOA estimates, the source location, and the microphone positions:

cov(∆p) = (HT
VH)−1 (1)

where V is a diagonal (N,N) matrix (N is the number of the defined microphone pairs). The
diagonal elements are the reciprocal variances of the TDOA estimates wii = 1

σ2

i

. H is a (N, 3)

matrix which relates the error of the localization ∆p to the errors in the TDOAs ∆τ :
∆τ = H · ∆p

(a) 2x4 line arrays with 0.2 m spacing (b) 4 Microphone pairs with 0.2 m spacing

Figure 2 - Log-scaled predicted localization error, (a) one compact 8 microphone array with a spacing

of 0.2 m between its microphones, (b) array with four microphone pairs each with a spacing of 0.2 m

between its microphones)

In figure 2 the predicted location errors are depicted as two different array geometries. In the
left figure the array geometry is a compact 8 microphone array and in the right figure the array
geometry is more sparsely, i.e. a microphone pair is placed at each border of the sensed area. It
is assumed that the variances for the TDOA estimation are only affected by the signal to noise
ratio (SNR) at the microphones. Since the spacing between the microphones of a pair is small
the same SNR can be assumed for both microphones.Therefore, the variances of the TDOA
estimates are reciprocally proportional to the square of the distance ri between the microphone
pair and the sound source φi ∝

1
r2

i

.
The brightness in figure 2 is related to the predicted error at a given position. A brighter dot

indicates a smaller predicted error. Figure 2 (a) shows that a precise localization is only possible
close to the microphone array whereas in figure 2 (b) the predicted localization error is better
balanced and a localization is feasible for all positions in the sensed area [4x4 m2]. This 2D
representation can easily expanded to 3D and the result will be the similar. The conclusion from
this example is that the microphone pairs have to be widely distributed in the sensed area to be
able to perform a 3D source localization.

3 System Overview

The audio system consists of three steps. First, the speaker is localized by the microphone
array. For this purpose we use the SRP-PHAT algorithm [1]. An appropriate Kalman filtering
improves the tracking results of a moving speaker. Second, enhancement of the noisy speech.
The microphone signals are then time aligned and averaged according to the estimated speaker
position and the microphone positions. After this Delay-and-Sum beamforming the signal is
further enhanced by one-channel postfiltering. Third, an automatic speech recognition (ASR)
system evaluates the enhanced speech and recognizes words.
The signal processing is efficiently done in the frequency domain. Let xi(n) denote the ith time

discrete microphone signal. The observed signals are then segmented into overlapping frames
and zero padding is used to avoid the effect of circular convolution in the beamformer. Then
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these frames are transformed into the frequency domain Xi(k, l) using the FFT, where k and l
are the frequency and time index, respectively.

4 Speaker Localization

For speaker localization, suitable microphone pairs are selected to contribute to the localiza-
tion. For each microphone pair the normalized cross power spectrum is calculated and then
transformed into the time domain to obtain the generalized cross-correlation with phase trans-
form (GCC-PHAT) for each microphone pair:

R
ij
GCC−PHAT (n, l) =

1

N

N−1
∑

k=0

( Xi(k, l) · X∗
j (k, l)

|Xi(k, l) · X∗
j (k, l)|

)

ej 2πnk

N . (2)

N is the frame length and n is the time shift in the generalized cross correlation. In the follow-
ing we will drop the time index l for a more convenient representation. With the GCC-PHAT
sequences from all used microphone pairs we can define a cost function depending on a virtual
speaker position S:

P (S) =
∑

pairs(i,j)

R
i,j
GCC−PHAT (δ(S, i, j)) , (3)

where δ(S, i, j) denotes the index corresponding to the time delay for the microphone pair i, j

if a virtual sound source is located at position S. If Mi and Mj are the microphone positions, δ

can be calculated as follows:

δ(S, i, j) =
|S − Mi| − |S − Mj|

c
(4)

where c represents the velocity of sound in air.
The speaker position is then estimated by maximizing of cost function P (S) over the sensed

area.
To improve the quality of the estimated speaker position we have implemented a Kalman filter.

Only the x and y coordinates are Kalman filtered because we have implied that the changes in
the z direction are small so that recursive smoothing for the z-coordinate is sufficient.
The motion model uses a simple Newtonian model with velocity and acceleration. The speaker

state vector θ(l) consists of 6 elements:

θ(l) = [x(l) y(l) ẋ(l) ẏ(l) ẍ(l) ÿ(l)] . (5)

The process noise is modeled by uncorrelated zero-mean noise. The covariance of the measure-
ment noise is calculated as a function of source location, sensor positions, and the generalized
cross correlations of the microphone pairs [13].

4.1 Beamformer

We use a Delay-and-Sum beamformer whose output can be computed in the frequency domain
by using a complex steering vector:

W
H(k) = (ej2πk/fsτ1, ej2πk/fsτ2, . . . , ej2πk/fsτM ) (6)

with τi = |S−Mi|
c

, (.)H denotes the hermitian transpose.
The output of the delay-and-sum beamformer in the frequency domain is then calculated by:

B(k, l) = W
H(k, l) · X(k, l) (7)
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with X(k, l) = (X1(k, l), X2(k, l), . . . , XN (k, l)).
The quality of the speech signal (e.g. SNR as a measurement) can differ significantly at differ-

ent microphones due to their differing locations. Therefore, we regroup the microphones into
subarrays where we assume that the speech quality for each microphone signal within a subar-
ray is equal. The output of the subarray beamformer is then weighted according to the SNR.
The SNR weighting factors are normalized so that the sum of the weighting factors is one. For
the SNR estimation we use the a priori SNR SNRprior, see section 4.2. The weighted outputs
of the subarrays are then time aligned and added up to give the output of the weighted subar-
ray delay-and-sum beamforming (WS-DSB). Figure 3 illustrates the structure of the WS-DSB.
Shown are three subarrays, each with four microphones.
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Figure 3 - Weighted subarray delay-and-sum beamformer (WS-DSB) with three subarrays, each with

four microphones.

4.2 One-Channel Postfilter

The output of the beamformer B(k, l) is supplied to a one-channel postfilter whose structure is
shown in figure 4. Postfilter can efficiently suppress stationary background noise by estimating
the power spectrum of the background noise and then optimally modifying the noisy speech
spectra according to statistical methods.

Estimation
Noise Speech

Estimation

PSfrag replacementsB(k, l)

N(k, l) S̃(k, l)

Figure 4 - Structure of one-channel postfilter

A simple and robust noise estimation is realized by minima controlled recursive averaging
(MCRA) as proposed by Cohen and Berdugo [14]. This algorithm takes advantage of the sim-
plicity of recursive averaging and of the robustness of the minimum based noise estimation
algorithm [15]. The noise estimate is given by averaging past spectral power values and using a
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smoothing parameter that is adjusted by the signal presence probability in subbands. Presence
of speech in subbands is determined by the ratio between the local energy of the noisy speech
and its minimum within a specified time window.
The speech estimation follows the decision directed method and uses the log-spectral amplitude

estimation rule as given by Ephraim and Malah [16]. The gain factor GLSA(k, l) is derived by:

GLSA(k, l) =
SNRprior(k, l)

1 + SNRprior(k, l)
exp

(

0.5

∫ ∞

t=ν(k,l)

e−t

t
dt

)

, (8)

where the a priori SNR SNRprior(k, l), and ν(k, l) are defined as in [16].
Finally, the enhanced spectral components are obtained by

S̃(k, l) = GLSA(k, l)B(k, l) . (9)

5 Experimental Setup and Results

Figure 5 shows an overhead view of the experimental setup. The room has a size of 10x6 m2,
its height is 4 m and the room reverberation is moderate. We used 12 microphones subdivided
into 3 subarrays with 4 microphones each, see figure 5. The microphones are marked with bold
dots. For the subarrays 2 and 3 only two microphones can be seen in the overhead view since
the four microphones in these subarrays are arranged in vertical rectangle. A result of a speaker
tracking is shown. The small dots depict the true position of the speaker, hand labeled with
a camera and a grid on the floor. The crosses mark the estimated position by the SRP-PHAT
method and the line represents the improved results after Kalman filtering.

Figure 5 - Overhead view of the scenario with a speaker tracking example

In the next step, the described microphone array setup was used to obtain real multichannel
recordings as the test database. The speakers were located in the sensed area (dashed rectangle
in figure 5). After each sentence the speaker’s position was changed. The recorded signals were
corrupted by ambient noise such as computer fans and air conditioning. The signal-to-noise
ratio varied from 6 dB to 13 dB depending on the channel and the speaker position. The test
database consisted of 1274 sentences, containing 5 german digits per sentence spoken by eleven
different speakers. The training database consisted of 600 sentences again containing 5 german
digits per sentence but spoken by six different speakers. The recordings for the training database
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were made with a close-talk microphone so that there is a mismatch between the training and
test database.
The noise reduced power spectra S̃(k, l) from equation 9 were used to calculate twelve standard

mel frequency cepstral coefficients (MFCC) in a frequency range between 64 Hz and 8000
Hz. These twelve MFCC and the logarithmic frame energy together with the corresponding
delta and acceleration coefficients resulted in a feature vector of dimension 39. The speech
recognition was based on a whole word hidden Markov model (HMM). Each word was modeled
by a HMM with 16 states and three gaussian mixtures per state. Two pause models, “sil” and
“sp”, were used which represented the pauses at the beginning/end and the pauses between the
words, respectively.
A summary of word error results is given in table 1. Subarray 1, subarray 2, and subarray

3 are the outputs of a conventional Delay-and-Sum beamformer (DSB) using the microphone
signals in a subarray. The overall DSB applies a conventional Delay-and-Sum beamformer
using all microphone signals. The weighted subarray delay-and-sum beamformer (WS-DSB) is
the algorithm proposed in section 4.1. The one-channel postfilter for the WS-DSB was applied
to each subarray output.

without postfilter with postfilter
WER [%] WER [%]

Subarray 1 24.07 19.94
Subarray 2 17.16 14.51
Subarray 3 18.51 14.39

overall DSB 16.28 14.09
WS-DSB 14.62 12.70

Table 1 - Word error rates (WER) in % for the three subarray DSB outputs, the overall DSB and the

weighted subarray (WS)-DSB.

The word error rates for the unprocessed microphone signals 1, 5 and 9, belonging to the
subarrays 1, 2 and 3, respectively, are shown in table 2. These word error rates serve as a
baseline.

Mic 1 Mic 5 Mic 9
WER [%] 29.40 25.42 28.67

Table 2 - Word error rates (WER) in % for three single microphone recordings

6 Conclusions

In this paper we have presented a real-time microphone array system for 3D speaker local-
ization, speech enhancement, and speech recognition. The ability to track a speaker position
is illustrated with an example. We have proposed a speech enhancement scheme based on a
subarray structure. In order to measure the performance of the system we have compared the
speech recognition results of several speech enhancement algorithms. The WS-DSB algorithm
reduces the word error rate from the best microphone signal (5) from 25.42% to 12.70%. We
also have shown that the proposed weighted subarray DSB performs better than the overall
DSB. The WER can be improved by training the environmental conditions. This would lower
the flexibility of the system since it has been trained to this specific acoustic conditions.

17



Literature

[1] J.H. DiBiase, H.F. Silverman, and M.S. Brandstein, Microphone Arrays, Signal Process-
ing Techniques and Applications, chapter 8, Springer Verlag, 2001.

[2] Fraunhofer HHI, “Sensing people homepage,”
URL: http://www.cebit2003.fraunhofer.de/servlet/is/4187/, 2003.

[3] P. Noll, “Microphone arrays in a sensing people project,” 5th International Workshop on
Microphone Array Systems - Theory and Practice, May 2003.

[4] M.S. Brandstein and D. Ward, Eds., Microphone Arrays, Springer, 2001.

[5] Charles. H. Knapp and G. Clifford Carter, “The generalized correlation method for esti-
mation of time delay,” IEEE Trans. on Acoustics, Speech and Signal Proc., vol. ASSP-24,
no. 4, August 1976.

[6] J. Benesty, “Adaptive eigenvalue decomposition algorithm for passive acoustic source
localization,” JASA, vol. 107(1), pp. 384–391, January 2000.

[7] P. Stoica and R. Moses, Introduction to Spectral Analysis, Prentice Hall, 1997.

[8] H. Krim and M. Viberg, “Two decades of array signal processing research. the parametric
approach,” IEEE Signal Processing Magazine, vol. 13, no. 4, pp. 67–94, July 1996.

[9] R. O. Schmidt, “Multiple emitter location and signal parameter estimation,” in IEEE
Trans. Antennas Propagat., March 1986, vol. AP-34, pp. 276–280.

[10] H. Wang and M. Kaveh, “Coherent signal-subspace processing for the detection and esti-
mation of angles of arrival of multiple wide-band sources,” in IEEE Trans. on Acoustics,
Speech, and Signal Processing, Aug. 1985, vol. ASSP–33, pp. 823–831.

[11] W. Hahn and S. Tretter, “Optimum processing for delay-vector estimation in passive signal
arrays,” in IEEE Trans. Information Theory, Sept. 1973, vol. IT-19, pp. 608–614.

[12] M. Drews, Mikrofonarrays und mehrkanalige Signalverarbeitung zur Verbesserung
gestörter Sprache, Ph.D. thesis, Technische Universität Berlin, 1999.

[13] M.S. Brandstein, J. E. Adcock, and H. F. Silverman, “Microphone array localization error
estimation with application to optimal sensor placement,” in J. Acoust. Soc. Am., 1996,
vol. 29(2), pp. 3807–3816.

[14] I. Cohen and B. Berdugo, “Noise estimation by minima controlled recursive averaging for
robust speech enhancement,” in IEEE Signal Processing Letters, January 2002, vol. 9, pp.
12–15.

[15] R. Martin, “Spectral subtraction based on minimum statistics,” in Proc. 7th EUSIPCO,
Sept. 1994, pp. 1182–1185.

[16] Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error
log-spectral amplitude estimator,” in IEEE Trans. Acoust., Speech, Signal Processing,
April 1985, vol. ASSP-33, pp. 443–445.

18




