The Influence of Signal Segmentation Methods on Rhythm-Based Speaker Recognition
Authors: Neda Mousavi, Sven Grawunder
Abstract:
This study investigates the effects of speech segmentation methods on speaker recognition models, particularly with regard to the use of rhythmic feature sets. Using three automatic methods and one manual method on the German database of Kiel corpus, segmentation was performed based on the identification of vowel onsets. Subsequently rhythmic variability indices derived from these intervals were calculated and used for principal component analysis and support vector machine model in order to investigate the variation among speakers. The results underline the influence of signal segmentation methods on speaker recognition models.


